University of Mumbai

Examination 2020 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Electronics Engineering

Curriculum Scheme: Rev 2019

Examination: SE Semester III

Course Code: ELC304 and Course Name: Electrical Networks Analysis and Synthesis Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which is the condition of symmetry for h parameters
Option A:	h12 = -h21
Option B:	h11h22-h12h21 = 1
Option C:	h11h21-h12h22 = 1
Option D:	h11 = 22
2.	A dependent source
Option A:	May be a current source or a voltage source
Option B:	Is always a voltage source
Option C:	Is always a current source
Option D:	Neither a current source nor a voltage source
	Find z parameters. Find z parameters. off 222 3222 NI 14-2 V2 0
Option A:	$\begin{bmatrix} 6 & 4 \\ 4 & 7 \end{bmatrix}$
Option B:	$\begin{bmatrix} 4 & 6 \\ 6 & 7 \end{bmatrix}$

Ontion C:	[4 6]	
Option C.		
Option D [.]	F (1)	
option D.		
	L7 4J	
4	Application of Norton's theorem to a circuit yields	
Ontion Λ	Equivalent current source and impedance in series	
Option R.	Equivalent current source and impedance in series	
Option B.		
Option C:	Equivalent impedance	
Option D:	Equivalent current source	
5.	In time domain analysis, the initial condition from $t = -\infty$ to $t = 0^{-1}$ denotes	
Option A.	Just after switching condition	
Ontion R.	Steady State Condition	
Option C:	After switching condition	
Option C:	Autor Switching condition	
Option D:	Just before switching condition	
6.		
	Which is this function	
	$z(s) = \frac{4(s^{*}+1)(s^{*}+9)}{1}$	
	$s(s^2+4)$	
Option A:	RC Function	
Option B [.]	RL Function	
Option C:	I C Function	
Option D:	DLC Eurotion	
Option D.		
7.	Find equivalent inductance.	
	H	
	1 2H IH CUL	
	FIOH & SHEN 6H-	
	F. mm com com	
Option A.	12 H	
Ontion R.	13 H	
Option D.	15 H	
Option C:		
Option D:	21 H	
8.	Find driving point impedance Z(S).	

	$\frac{132}{13} \frac{5}{13} \frac{1}{13} \frac{1}{13}$
Option A:	$\frac{2s^2 - 3s + 3}{2s + 1}$
Option B:	$\frac{2s^2 + 3s + 3}{2s + 1}$
Option C:	$\frac{2s^2 + 3s - 3}{2s + 1}$
Option D:	$\frac{2s^2 - 3s - 3}{2s + 1}$
9.	The necessary and sufficient condition for a rational function F(S)to be the driving point impedance of an RC network is that all poles and zeros should be
Option A:	Simple and lie on the negative real axis in the s plane.
Option B:	Complex and lie in the left half of s plane.
Option C:	Complex and lie in the right half of s plane.
Option D:	Simple and lie on the positive real axis of the s plane.
10	
10.	For the given network find poles and zeros of function I_o/I_i \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
Option A:	Zeros at -0,-2 and poles at 1,1
Option B:	Zeros at 0,-2 and poles at 1,1
Option C:	Zeros at 0,-2 and poles at -1,-1
Option D:	Zeros at 0,2 and poles at -1,-1
11	Which is the condition of symmetry for ARCD parameters
Ontion A^{\cdot}	AD-BC = 1
Option B [•]	B = C
Option C:	AB - CD = 1

Option D:	A = D
12.	Calculate Z(n)
	312-2-510 2-1-
	23-2 Z(n)
Ontion A.	$3.86 \text{ angle } 36.03^{\circ} \text{ ohm}$
Option R:	$3.86 \text{ angle } -36.03^{\circ} \text{ ohm}$
Option C:	$3.68 \text{ angle } 36.03^{\circ} \text{ ohm}$
Option D:	$3.68 \text{ angle} - 36.03^{\circ} \text{ ohm}$
option D.	
13.	The concept on which superposition theorem based is
Option A:	Reciprocity
Option B:	Duality
Option C:	Non-linearity
Option D:	Linearity
14.	The cut-off frequency of given circuit is
	0.4 μF 0.4 μF
	3 50 mH
	9
	00
Ontion A.	3 183 kHz
Option B:	795 77 Hz
Option C:	1 591 kHz
Option D:	253.3 Hz
15.	Find the voltage V _{AB}
	T A
	33.2
	6T X
	(h) = T SV
	51
	- OB
Ontion Δ .	11 I
Option B.	3+6 I
Option C [.]	6 I+5
Option D:	31 I

16.	Two identical sections of the network are connected in cascade having ABCD
	parameters as
	$\begin{bmatrix} A & B \end{bmatrix} = \begin{bmatrix} 7 & 8 \end{bmatrix}$
	$L_C D J L_{2.5} 3 J^{2}$
	Find Overall ABCD parameters
Option A:	[80_69]
1	
Option B:	[69_25]
1	
Option C:	29 25
	L80 69J
Option D:	[69 80]
1	
17.	Kirchhoff's current law states that
Option A:	Net current flow at the junction is positive
Option B:	Algebraic sum of the currents meeting at the junction is zero
Option C:	No current can leave the junction without some current entering it
Option D:	Current can leave the junction without some current entering it
18.	At $t = 0^{-1}$ No saturation condition has been reached. At $t = 0$ Switching action for
	application of DC source to inductive circuit $At t = 0^+$ What will be the status of
	inductor?
Option A:	As it is
Option B:	Open Circuit
Option C:	Short Circuit
Option D:	Current Source
<u>19.</u>	In Maximum Power Transfer Theorem Pmax is
Option A:	
	Vth
	2Rth
Option B:	
	Vth^2
	2Rth
Option C:	
-ruon c.	$V + h^2$
	4Kth
1	

	$\frac{Vth^2}{2RL}$
20.	For the given ladder network which is not correct. T T T T T T T T T T
Option A:	VC =V2
Option B:	Vb = V2
Option C:	Va = Vb
Option D:	Va = 2sIa + Vb

Q2 (20 Marks)	
A	Solve any Two 5 marks each
i.	Test Whether the given function is positive real function. $F(s) = \frac{2s^3 + 2s^2 + 3s + 2}{s^2 + 1}$
ii.	Synthesis in Cauer II $Z(s) = \frac{(s+1)(s+3)}{s(s+2)}$
iii.	Synthesis in Cauer I $Z(s) = \frac{(s^2+1)(s^2+9)}{s(s^2+4)}$
В	Solve any One 10 marks each
i.	Determine Y and ABCD parameters

03 (20	
Q5 (20 Morks)	
	Calua and True 5 months and
A	Solve any two 5 marks each
1.	In the network shown in figure the switch is changed from the position 1 to the position 2 at $t = 0$, steady state condition having reached before switching. Find values of i, di/dt, and d ² i/dt ² . At $t = 0^+$
	40V 31H D 1.4F
ii.	For the network shown in figure, find the response $V_0(t)$
	$V_{s}(t) = \frac{1}{2} (os \pm u(t)) (t) (t) (t) (t)$

University of Mumbai Examination 2020 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examination Commencing from 7th January 2021 to 20th January 2021 Program: Electronics Engineering Curriculum Scheme: Rev 2019 Examination: SE Semester III Course Code: ELC304 and Course Name: Electrical Networks Analysis and Synthesis Time: 2 hour Max. Marks: 80

Q1:

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	А
Q3.	А
Q4	В
Q5	D
Q6	С
Q7	D
Q8.	В
Q9.	А
Q10.	С
Q11.	D
Q12.	С
Q13.	D
Q14.	В
Q15.	С
Q16.	D
Q17.	В
Q18.	В
Q19.	С
Q20.	С

Important steps and final answer for the questions involving numerical example

x

Q2(A): (i)

Q2A(ii)

A

Q2A(iii)

Q2B(i)

x

τ

Q2B(ii)

x

Q3A(i)

.

 $\frac{-d^{2}i}{dt} = 2 \cdot \frac{di}{dt} = 10^{4}i = 0 = 0$ $A_{t}^{2} = \frac{d^{2}i(0^{+})}{dt^{2}} = 2 \cdot \frac{di}{dt} = 10^{4}i = 0 = 0$ $A_{t}^{2} = \frac{d^{2}i(0^{+})}{dt^{2}} = 2 \cdot \frac{di}{dt} = (0^{+}) = 10^{4}i(0^{+}) = 0$ $A_{t}^{2} = \frac{d^{2}i}{dt^{2}} = 800 \cdot \frac{4}{3} = 300 \cdot \frac{4}{3} = 0$ $V_{s}(0) = \frac{1}{2} \cdot \frac{s}{s^{2}+1} = \frac{2}{5} \cdot \frac{V_{s}(1)}{s^{2}} = \frac{s}{s^{2}+1} = \frac{2}{5} \cdot \frac{V_{s}(1)}{s^{2}} = \frac{s}{s^{2}+1} = \frac{1}{5} \cdot \frac{V_{s}(1)}{s^{2}} = \frac{s}{s^{2}+1} + \frac{c}{s^{2}+1} = \frac{1}{5} \cdot \frac{1}{s^{2}+1} = \frac{1}{5} \cdot \frac{1}{s^{2}+1} = \frac{1}{5} \cdot \frac{1}{s^{2}+1} = \frac{1}{5} \cdot \frac{1}{s^{2}+1} + \frac{c}{s^{2}+1} = \frac{1}{5} \cdot \frac{1}{s^{2}+1} + \frac{c}{s^{2}+1} = \frac{1}{5} \cdot \frac{1}{s^{2}+1} + \frac{c}{s^{2}+1} = \frac{1}{5} \cdot \frac{1}{s^{2}+1} + \frac{1}{5} \cdot \frac{1}{s^{2}+1} \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{s^{2}+1} + \frac{1}{5} \cdot \frac{1}{5$

 $\begin{aligned} & V_0(s) = \frac{o \cdot 4s}{s^2 + 1} + \frac{o \cdot 2}{s^2 + 1} - \frac{o \cdot 4}{s + 2} \\ & V_0(t) = o \cdot 4 \cos t + o \cdot 2 \sin t - o \cdot 4 \cdot e^{-2t}. \end{aligned}$

Q3A(iii)

930
(iii). Shep I
$$r = \frac{1}{4} + \frac$$

Q3B(i)

O 93 B (j). Step I 202 55-2 H NoV VTH 2A Stept \$ Vx = 2I2 $\mp_1 = -3V_X = -3(2\pm_2) = -6\pm_2$ Mesh] Meghz IZ=2A, II=-12A VTH- 0+ 5=1+15(=1-=2)-2=0 For VTH V7H = 274 V. 20-2 W/ ßtep∓ ®sv_× 52 152 152 ŦΝ Ľ\$3 2A KF2 ₿ $V_{\chi} = 2(f_2 - f_1)$. Iz=2 **>**D

Meghi and 3 form supermont.
Apply
$$\xi VL$$

 $-5I_1 - 2\sigma I_3 - 2(I_3 - I_2) - 15(I_1 - I_2) = \sigma$
 $-2\sigma I_1 + 17 I_2 - 2^2 I_3 = \sigma - 90$
And $I_3 - I_1 = 3V_3 = 3[2(I_2 - I_1)]$
 $I_1 + 6I_2 - 7I_3 = \sigma - 90$
So living $0, 0, 0, 0$.
 $-I + eI_3 = 1 \cdot 6q A$.
 $J+eptite RH = 162.13 - p$,
 $I \cdot 6q A = 162.13 - p$,
 $I = I_3 - I_1 - g$

Q3B(ii)

Ð Q3B (ii) Equivalent ext. 15-2 15.66I2 15.46I1 3-\$ 5-n-50 Lon -j4-r BY KUL to mesh 1 50 Lo° - j5I1 - j5 66 ±2 - (3- j4) (I1- I2)=0 (3+j1) = - (3-j9.66)= = 50 20°-0 By KUL to megh 2 - (3 - 54)(+2 - F1) - 10 +2 - 5.66 +1 - 5+2=0 $= (3-jq.64) \pm (8+j6) \pm 2 = 0$ $= \begin{bmatrix} 3+j1 & -(3-jq.64) \\ -(3-jq.66) & 8+j6 \end{bmatrix} \begin{bmatrix} \pm 1 \\ \pm 2 \end{bmatrix} = \begin{bmatrix} 50 & 20^{\circ} \\ 0 \end{bmatrix}$ 50 200 By cramer rule

$$\exists z = \frac{\begin{vmatrix} 3+j \\ -(3-j4,64) \\ 0 \end{vmatrix}}{\begin{vmatrix} 3+j \\ -(3-j4,64) \\ 0 \end{vmatrix}}$$

$$\exists z = 3 \cdot 82 \quad \angle -112 \cdot 14^{\circ} A \quad .$$

$$V_{5.2} = 5 \exists z = 19 \cdot 1 \quad \angle = 112 \cdot 14^{\circ} V \quad .$$

$$= \chi = \chi = \chi$$