University of Mumbai

Examination 2020 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examinations Commencing from 7 ${ }^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III
Course Code: ELC304 and Course Name: Electrical Networks Analysis and Synthesis
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	Which is the condition of symmetry for h parameters	
Option $\mathrm{A}:$	$\mathrm{h} 12=-\mathrm{h} 21$	
Option $\mathrm{B}:$	$\mathrm{h} 11 \mathrm{~h} 22-\mathrm{h} 12 \mathrm{~h} 21=1$	
Option $\mathrm{C}:$	$\mathrm{h} 11 \mathrm{~h} 21-\mathrm{h} 12 \mathrm{~h} 22=1$	
Option $\mathrm{D}:$	$\mathrm{h} 11=22$	
2.	A dependent source	
Option $\mathrm{A}:$	May be a current source or a voltage source	
Option $\mathrm{B}:$	Is always a voltage source	
Option $\mathrm{C}:$	Is always a current source	
Option $\mathrm{D}:$	Neither a current source nor a voltage source	
3.		
Option $\mathrm{A}: ~$	$\left[\begin{array}{ll}6 & 4 \\ 4 & 7\end{array}\right]$	

Option C:	$\left[\begin{array}{ll} 4 & 6 \\ 4 & 6 \end{array}\right]$
Option D:	$\left[\begin{array}{ll} 6 & 4 \\ 7 & 4 \end{array}\right]$
4.	Application of Norton's theorem to a circuit yields
Option A:	Equivalent current source and impedance in series
Option B:	Equivalent current source and impedance in parallel
Option C:	Equivalent impedance
Option D:	Equivalent current source
5.	In time domain analysis, the initial condition from $t=-\infty$ to $t=0^{-}$denotes
Option A:	Just after switching condition
Option B:	Steady State Condition
Option C:	After switching condition
Option D:	Just before switching condition
6.	Which is this function $z(s)=\frac{4\left(s^{2}+1\right)\left(s^{2}+9\right)}{s\left(s^{2}+4\right)}$
Option A:	RC Function
Option B:	RL Function
Option C:	LC Function
Option D:	RLC Function
7.	Find equivalent inductance.
Option A:	12 H
Option B:	13 H
Option C:	15 H
Option D:	21 H
8.	Find driving point impedance $\mathrm{Z}(\mathrm{S})$.

Option A:	$\frac{2 s^{2}-3 s+3}{2 s+1}$
Option B:	$\frac{2 s^{2}+3 s+3}{2 s+1}$
Option C:	$\frac{2 s^{2}+3 s-3}{2 s+1}$
Option D:	$\frac{2 s^{2}-3 s-3}{2 s+1}$
9.	The necessary and sufficient condition for a rational function F (S)to be the driving point impedance of an RC network is that all poles and zeros should be
Option A:	Simple and lie on the negative real axis in the s plane.
Option B:	Complex and lie in the left half of s plane.
Option C:	Complex and lie in the right half of s plane.
Option D:	Simple and lie on the positive real axis of the s plane.
10.	For the given network find poles and zeros of function $\mathrm{I}_{\mathrm{o}} / \mathrm{I}_{\mathrm{i}}$
Option A:	Zeros at $-0,-2$ and poles at 1,1
Option B:	Zeros at 0,-2 and poles at 1,1
Option C:	Zeros at $0,-2$ and poles at $-1,-1$
Option D:	Zeros at 0,2 and poles at $-1,-1$
11.	Which is the condition of symmetry for ABCD parameters
Option A:	$\mathrm{AD}-\mathrm{BC}=1$
Option B:	$\mathrm{B}=\mathrm{C}$
Option C:	$\mathrm{AB}-\mathrm{CD}=1$

Option D:	$\mathrm{A}=\mathrm{D}$
12.	
Option A:	3.86 angle $36.03^{\circ} \mathrm{ohm}$
Option B:	3.86 angle -36.03^{0} ohm
Option C:	3.68 angle $36.03^{\circ} \mathrm{ohm}$
Option D:	3.68 angle -36.03^{0} ohm
13.	The concept on which superposition theorem based is
Option A:	Reciprocity
Option B:	Duality
Option C:	Non-linearity
Option D:	Linearity
14.	The cut-off frequency of given circuit is
Option A:	3.183 kHz
Option B:	795.77 Hz
Option C:	1.591 kHz
Option D:	253.3 Hz
15.	Find the voltage V_{AB}
Option A:	11 I
Option B:	3+6 I
Option C:	$6 \mathrm{I}+5$
Option D:	31 I

16.	Two identical sections of the network are connected in cascade having ABCD parameters as $\left[\begin{array}{ll} A & B \\ C & D \end{array}\right]=\left[\begin{array}{cc} 7 & 8 \\ 2.5 & 3 \end{array}\right]$ Find Overall ABCD parameters
Option A:	$\left[\begin{array}{ll} 80 & 69 \\ 25 & 29 \end{array}\right]$
Option B:	$\left[\begin{array}{ll}69 & 25 \\ 80 & 29\end{array}\right]$
Option C:	$\left[\begin{array}{ll}29 & 25 \\ 80 & 69\end{array}\right]$
Option D:	$\left[\begin{array}{ll} 69 & 80 \\ 25 & 29 \end{array}\right]$
17.	Kirchhoff's current law states that
Option A:	Net current flow at the junction is positive
Option B:	Algebraic sum of the currents meeting at the junction is zero
Option C:	No current can leave the junction without some current entering it
Option D:	Current can leave the junction without some current entering it
18.	At $t=0^{-}$, No saturation condition has been reached. At $t=0$, Switching action for application of DC source to inductive circuit. At $t=0^{+}$, What will be the status of inductor?
Option A:	As it is
Option B:	Open Circuit
Option C:	Short Circuit
Option D:	Current Source
19.	In Maximum Power Transfer Theorem Pmax is
Option A:	$\frac{V t h}{2 R t h}$
Option B:	$\frac{V t h^{2}}{2 R t h}$
Option C:	$\frac{V t h^{2}}{4 R t h}$
Option D:	

| | $\frac{V t h^{2}}{2 R L}$ |
| :--- | :--- | :--- |
| 20. | For the given ladder network which is not correct. |
| Option $\mathrm{A}:$ | $\mathrm{VC}=\mathrm{V} 2$ |
| Option $\mathrm{B}: ~$ | $\mathrm{Vb}=\mathrm{V} 2$ |
| Option $\mathrm{C}:$ | $\mathrm{Va}=\mathrm{Vb}$ |
| Option $\mathrm{D}:$ | $\mathrm{Va}=2 \mathrm{sIa}+\mathrm{Vb}$ |

Q2 (20 Marks)	
A	Solve any Two 5 marks each
i.	Test Whether the given function is positive real function. $\mathrm{F}(\mathrm{s})=\frac{2 s^{2}+2 s^{2}+3 s+2}{s^{2}+1}$
ii.	Synthesis in Cauer II $\mathrm{Z}(\mathrm{s})=\frac{(s+1)(s+3)}{s(s+2)}$
iii.	Synthesis in Cauer I $\mathrm{Z}(\mathrm{s})=\frac{\left(s^{2}+1\right)\left(s^{2}+9\right)}{s\left(s^{2}+4\right)}$ I.
B	Solve any One 10 marks each
i.	Determine Y and ABCD parameters

$\begin{gathered} \hline \text { Q3 (20 } \\ \text { Marks) } \\ \hline \end{gathered}$	
A	Solve any Two 5 marks each
i.	In the network shown in figure the switch is changed from the position 1 to the position 2 at $\mathrm{t}=0$, steady state condition having reached before switching. Find values of $\mathrm{i}, \mathrm{di} / \mathrm{dt}$, and $\mathrm{d}^{2} \mathrm{i} / \mathrm{dt}^{2}$. At $\mathrm{t}=0^{+}$
ii.	For the network shown in figure, find the response $\mathrm{V}_{0}(\mathrm{t})$

iii.

University of Mumbai

Examination 2020 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examination Commencing from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III
Course Code: ELC304 and Course Name: Electrical Networks Analysis and Synthesis
Max. Marks: 80

Q1:

Question Number	Correct Option Enter either 'A' or 'B' or ' \mathbf{C} ' or ' \mathbf{D} ')
Q1.	B
Q2.	A
Q3.	A
Q4	B
Q5	D
Q6	C
Q7	D
Q8.	B
Q9.	A
Q10.	C
Q11.	D
Q12.	C
Q13.	D
Q14.	B
Q15.	C
Q16.	D
Q17.	B
Q18.	B
Q19.	C
Q20.	C

Important steps and final answer for the questions involving numerical example

Q2(A): (i)

Q2A(ii)

Q2B(i)

Q2A(iii)

Q2B(ii)

$$
\begin{aligned}
& \frac{-d^{2} i}{d t^{2}} \cdot 2 \cdot \frac{d i}{d t}-10^{1} i-0=0 \\
& A_{t=0^{t}}^{t} \frac{d^{2} i\left(0^{t}\right)}{d t^{2}}-20 \frac{d i^{\prime}}{d t}\left(0^{t}\right)=10^{6} \dot{\left(0^{t}\right)=0} \\
& \text { 痤 } \frac{d^{2} i\left(0^{+}\right)}{d t^{2}}=800 \mathrm{~A} / \mathrm{s}^{2} \\
& \text { Q } 3 A(i i) \\
& \text { For } 1>0 \\
& V_{s}(s)=\frac{1}{2} \cdot \frac{s}{s^{2}+1} \quad \lim _{s(s)}^{W^{2}}: \frac{4}{s} V_{0}(s) \\
& \text { By Voltag-e divider rule. } \\
& V_{0}(s)=V_{s}(s) \times \frac{\frac{4}{s}}{2+\frac{4}{s}}=\frac{2 V_{s}(s)}{s+2}=\frac{s}{\left(s^{2}+1\right)(s+2)} \\
& V_{0}(s)=\frac{A s+\beta}{s^{2}+1}+\frac{c}{s+2} \\
& s=(A S+B)(S+2)+C\left(S^{2}+1\right) \text {. } \\
& \text { By solving } A=0.4, B=0.2, C=-0.4 \\
& V_{0}(s)=\frac{0.4 s}{s^{2}+1}+\frac{0.2}{s^{2}+1}-\frac{0.4}{s+2} \\
& V_{0}(t)=0.4 \cos t+0.2 \sin t-0.4 e^{-2 t} .
\end{aligned}
$$

Q3A(iii)

$$
\begin{aligned}
& \text { Q3 } 1 \text { (} \\
& \text { (iii). Siep } 7 \\
& \text { P3kuL } \\
& 18-F^{\prime}+2 v_{x}-6 w^{\prime}=0 \\
& \begin{array}{c}
18-\Psi^{\prime}-2 F^{\prime}-6 F^{\prime}=0 \\
I^{\prime}=2 A(\psi)
\end{array}\left\{\begin{aligned}
V_{x} & =(-1) 土^{\prime} \\
& =-F^{\prime}
\end{aligned}\right. \\
& \text { Stept }
\end{aligned}
$$

$$
\begin{aligned}
& I_{2}-I_{1}=3 \cdots(2) \\
& \text { ByKVL - }-I_{1}+2 / V_{x}-6 I_{2}=0 \\
& -I_{1}-2 I_{1}-6 I_{2}=0 \\
& 3 I_{1}+6 I_{2}=0 \\
& \text { folving (2) \& (3) } \\
& \begin{array}{l}
I_{1}=-2 A_{1} I_{2}=1 A=I^{\prime \prime} \\
I_{1}=-2 A, I_{2}=1 A(\psi)=I^{\prime \prime}
\end{array} \\
& I_{6 \Omega}=F^{\prime}+\mp^{\prime \prime}=3 \mathrm{~A}(\psi)^{\prime} \text {. }
\end{aligned}
$$

Q3B(i)

Q3 (B)

Mesh 1 and 3 form Sypermioh
Apply $\& v$

$$
\begin{aligned}
& \quad 5 I_{1}-20 I_{3}-2\left(I_{3} I_{2}\right)-15\left(I_{1} I_{2}\right)=0 \\
&-20 I_{1}+17 I_{2}-2 I_{3}=0-9(0) \\
& \text { And } I_{3}-I_{1}=3 I_{x}=3\left[2\left(I_{2}-I_{1}\right)\right] \\
& I_{1}+6 I_{2}-7 I_{3}=0 \longrightarrow \text { (3) }
\end{aligned}
$$

folving (1), (2), (3).

$$
I_{N}=I_{3}=1.69 \mathrm{~A} .
$$

3tept11

$$
\begin{aligned}
& \text { (i) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mesh1 } F_{1}=-3 V_{x}=-3\left(2 I_{2}\right)=-6 I_{2} \\
& \text { Mesh2 } I_{2}=2 A_{1} \quad I_{1}=-12 \mathrm{~A} \\
& \text { For } V_{T H} \quad V_{T H}-0+5 I_{1}+15\left(I_{1}-I_{2}\right)-2 I_{2}=0 \\
& V_{T H}=274 \mathrm{~V} \text {. } \\
& \text { Step } 7 \\
& V_{x}=2\left(I_{2}-F_{1}\right) \text {. } \\
& I_{2}=2 \longrightarrow \text { (1) }
\end{aligned}
$$

Q3B(ii)

Q3(B)
(ii). Equivatent ckt

By KVL to mesh 1

$$
\begin{aligned}
& 50 L 0^{\circ}-j 5 I_{1}-j 5.65 I_{2}-(3-j 4)\left(I_{1}-I_{2}\right)=0 \\
& \left.(3+j 1) I_{1}-(3-j 9.66) I_{2}=50<0^{\circ}-0\right)
\end{aligned}
$$

Bykul to megh 2

$$
-(3-j 4)\left(I_{2}-F_{1}\right)-j 10 I_{2}-j 5.66 I_{1}-5 I_{2}=0
$$

In matrix form

$$
\begin{aligned}
& -(3-j 9.61) I_{1}+(8+j-6) I_{2}=0 \\
& \text { ix form }
\end{aligned}
$$

$$
\begin{aligned}
& n \text { matrix form } \\
& {\left[\begin{array}{cc}
3+j 1 & -(3-j 9.66) \\
-(3-j 9.66) & 8+j 6
\end{array}\right]\left[\begin{array}{l}
F_{1} \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
50<0^{\circ} \\
0
\end{array}\right]}
\end{aligned}
$$

By cramer rufe

$$
\begin{aligned}
I_{2} & =\frac{\left|\begin{array}{cc}
3+j 1 & 50.10 \\
-(3-j q .65) \cdot d
\end{array}\right|}{\left|\begin{array}{l}
3+j 1 \\
-(3-j p .66) \\
(3-j 966) \mid \\
8+j 6
\end{array}\right|} \\
I_{2} & =3.82 L-112.14^{\circ} \mathrm{A} \\
V_{5 \Omega} & =5 I_{2}=19.1 L-112.14^{\circ} \mathrm{V} . \\
& =-
\end{aligned}
$$

