University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examination for Direct Second Year Students Commencing from 10 ${ }^{\text {th }}$ April 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III (For DSE Students)
Course Code: ELC303 and Course Name: Digital Logic Circuits
Time: 2 hours
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Convert Decimal $(105)_{10}$ to Binary.
Option A:	$(101001)_{2}$
Option B:	$(1101001)_{2}$
Option C:	$(1110101)_{2}$
Option D:	$(1001011)_{2}$
2.	In Hamming code this expression will help you to find out number of parity bits.
Option A:	$2^{\mathrm{P}}>=\mathrm{P}+\mathrm{M}+1$
Option B:	$2^{\mathrm{P}}<=\mathrm{P}+\mathrm{M}+1$
Option C:	$2^{\mathrm{P}}=\mathrm{P}+\mathrm{M}-1$
Option D:	$2^{\mathrm{P}}<=\mathrm{P}+\mathrm{M}-1$
3.	Convert(125) $)_{8}$ octal to binary
Option A:	$(1010101)_{2}$
Option B:	$(101010)_{2}$
Option C:	$(1010111)_{2}$
Option D:	$(11010101)_{2}$
4.	A multiplexer with 3 select lines is a
Option A:	$4: 1$ multiplexer
Option B:	$8: 1$ multiplexer
Option C:	$16: 1$ multiplexer
Option D:	$32: 1$ multiplexer
5.	IC 74138 is a
Option A:	$3: 8$ line decoder
Option B:	$1: 8$ line decoder
Option C:	$4: 8$ line decoder
Option D:	any lines to 8 line decoder
6.	The IC 74151 can function as a
Option A:	$4: 1$ multiplexer
Option B:	$8: 1$ multiplexer
Option C:	$16: 1$ multiplexer
Option D:	$32: 1$ multiplexer

7.	IC 7485 is a
Option A:	4 bit magnitude comparator
Option B:	4 bit adder
Option C:	4 bit subtractor
Option D:	decoder
8.	Machine whose output depends on present state and external input is :
Option A:	Mealy
Option B:	Sequential asynchronous
Option C:	Asynchronous
Option D:	Moore
9.	Which one of the following is a method of state minimization?
Option A:	Truth table
Option B:	K-map
Option C:	Quine Mcclusky method
Option D:	Implication chart
10.	IC 7492 is a
Option A:	MOD 12 Asynchronous counter
Option B:	MOD 12 Synchronous counter
Option C:	MOD 16 Asynchronous counter
Option D:	MOD 16 Synchronous counter
11.	In IC 74194 when control inputs s1 and s0 are one, it gives \qquad operation.
Option A:	Shift right
Option B:	Shift left
Option C:	Hold
Option D:	Load
12.	IC 7490 consist of
Option A:	MOD 6, MOD 2 counter
Option B:	MOD 5, MOD 2 counter
Option C:	MOD 8, MOD 2 counter
Option D:	MOD 5, MOD 3 counter
13.	Condition: $\mathrm{IC} 74163, \mathrm{CLR}=\mathrm{ENP}=\mathrm{ENT}=1, \mathrm{LD}=0, \mathrm{ABCD}=0011$, What is the output at pin QD, QC, QB, QA
Option A:	1100
Option B:	0011
Option C:	0101
Option D:	0010
14.	Which of the Logic family dissipate minimum power
Option A:	TTL
Option B:	CMOS
Option C:	DTL
Option D:	ECL

15.	Figure of merit of IC family is
Option A:	Gate propagation delay
Option B:	Gate power Dissipation
Option C:	Speed power product
Option D:	fan out
16.	The number of similar gates which can be driven by a gate is called as
Option A:	Power dissipation
Option B:	Noise margin
Option C:	Fan-out
Option D:	Speed
17.	FPGA stands for
Option A:	Field Programmable Gate Application
Option B:	Field Programmable Gate Array
Option C:	Field Programming Gate Array
Option D:	FET Programmable Gate Array
18.	In procedural assignment
Option A:	reg
Option B:	wire
Option C:	wor
Option D:	tri
19.	Operator symbol <<< is a
Option A:	Arithmetic shift left
Option B:	Arithmetic shift right
Option C:	Logical shift left
Option D:	Logical shift right
20.	
Option A:	reg
Option B:	integer
Option C:	real
Option D:	wire

Q2 (20 Marks)	
Q2.A	Solve any Two 5 marks each
i.	Write short note on Hamming code.
ii.	Compare Melay and Moore Machine.
iii.	Write a program using Verilog HDL for implementing a 4:1 multiplexer using data flow modeling.
Q2.B	Solve any One 10 marks each

i.	Implement the function $s=\sum m(1,2,4,7)$ and $c=\sum m(3,5,6,7)$ using a 3:8 decoder IC 74138.
ii.	Explain universal shift register. Design and implement a twisted ring counter using IC 74194.
Q3 (20 Marks)	
Q3.A	Solve any Two 5 marks each
i.	Explain with diagram working of IC 7483.
ii.	Write short note on CPLD Architecture.
iii.	Write a program to implement half adder using Verilog HDL.
i.	Design MOD-6 counter using IC7490.
ii.	Analyze the given state machine and draw the state diagram.

University of Mumbai

Examination 2021 under Cluster 06
(Lead College: Vidyavardhini's College of Engg Tech)
Examination for Direct Second Year Students Commencing from 10 ${ }^{\text {th }}$ April 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III (For DSE Students)
Course Code: ELC303 and Course Name: Digital Logic Circuits
Time: 2 hours
Max. Marks: 80

Q1:

Question Number	Correct Option (Enter either ' \mathbf{A}^{\prime} or ' \mathbf{B} or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	B
Q2.	A
Q3.	A
Q4	B
Q5	A
Q6	B
Q7	A
Q8.	A
Q9.	D
Q10.	A
Q11.	B
Q12.	A
Q13.	B
Q14.	C
Q15.	C
Q16.	B
Q17.	A
Q18.	A
Q19.	D
Q20.	

Important steps and final answer for the questions involving numerical example
Q.2A(ii)IC7483 4 bit Binary Adder

- IC 7483 -Four bit Binary Adder IC
- 4 bit Binary Number A ,4 bits are A3,A2,A1,A0
- 4 bit Binary Number B, 4 bits are B3,B2,B1,B0
- Cin, Cout

Sum we will get at $\mathrm{S} 3, \mathrm{~S} 2, \mathrm{~S} 1, \mathrm{~S} 0$

Q.2A(iii)

```
module m41 ( input a,
```

module m41 (input a,
input b,
input b,
input c,
input c,
input d,
input d,
input s0, s1,

```
input s0, s1,
```

```
output out);
    assign out = s1 ? (s0 ? d
    : c) : (s0 ? b : a);
endmodule
```

Q.2B(i)

Q.3A(i)

Q.3A(ii) CPLD Architecture:

- The CPLD consists of a number of logic blocks or functional blocks, each of which contains a macrocell and either a PLA or PAL circuit arrangement.
- In the diagram eight logic blocks are shown. The building block of the CPLD is the macro-cell, which contains logic implementing disjunctive normal form expressions and more specialized logic operations.
- In the center of the design is a global programmable interconnect.
- This interconnect allows connections to the logic block macrocells and the I/O cell arrays (the digital I/O cells of the CPLD connecting to the pins of the CPLD package).

- The programmable interconnect is usually based on either array-based interconnect or multiplexer-based interconnect

Q.3a(iii)

```
module half_adder (Sum, Carry, A, B);
    input A, B;
    output Carry, Sum;
    //structural description
    xor G1(Sum, A, B);
    and G2(Carry, A, B);
endmodule
```

Q.3b(i)

Asynchronous BCD Decade counter IC 7490
Set pins are active low and reset pins are active high
Q.3b(ii)

Step1:Moore machine
Step2 :Equations

$$
\begin{aligned}
& A^{+}=D_{A}=X \oplus B^{\prime} \\
& B^{+}=D_{B}=A+X
\end{aligned}
$$

$\mathrm{Z}=\mathrm{A}$ XOR B
Step3:State transition table

Present State $\mathbf{A B}$	Input \mathbf{X}	Next State $\mathbf{A}^{+} \mathbf{B}^{+}$	Current Output \mathbf{Z}
00	0	10	0
	1	01	
01	0	00	1
	1	11	
10	0	11	1
	1	01	
11	0	01	0
	1	11	

Step 4: State assignment
$\mathrm{S}_{0}=00, \mathrm{~S}_{1}=01, \mathrm{~S}_{2}=10, \mathrm{~S}_{3}=11$
Step 5: State Diagram

