University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examination for Direct Second Year Students Commencing from 10 ${ }^{\text {th }}$ April 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III (For DSE Students)
Course Code: ELC304 and Course Name: Electrical Network Analysis and Synthesis
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	\qquad between coils is defined as fraction of magnetic flux produced by the current in one coil that links the other
Option A:	Coefficient of Coupling
Option B:	Self Inductance
Option C:	Mutual Inductance
Option D:	Self Coupling
2.	The combined inductance of two coils connected in series is 0.6 H or 0.1 H depending on relative directions of currents in the two coils. If one of the coils has a self-inductance of 0.2 H , find (a) mutual inductance, and (b) coefficient of coupling.
Option A:	(a)M $=0.105 \mathrm{H}$, (b) $\mathrm{K}=0.62$
Option B:	(a)M $=0.125 \mathrm{H}$, (b) $\mathrm{K}=0.72$
Option C:	(a)M=0.115H, (b) $\mathrm{K}=0.72$
Option D:	(a)M $\mathrm{M}=0.125 \mathrm{H}$, (b) $\mathrm{K}=0.62$
3.	Which notation of instant implies that the unchanged condition of network is about to change?
Option A:	$\mathrm{t}(0)^{+}$
Option B:	t(0)-
Option C:	t^{*}
Option D:	t
4.	What does ' σ ' indicate in the equation of complex frequency variable $s=\sigma+j \omega$ while defining the Laplace transform?
Option A:	Attenuation constant
Option B:	Damping factor

Option C:	Propagation constant
Option D:	Phase constant
5.	Consider a function $\mathrm{f}(\mathrm{t})$ that satisfies the differential equation given below. What equation will be generated by taking Laplace transform and replacing the terms $\mathrm{f}\left(0^{-}\right) \& \mathrm{f}^{\prime}\left(0^{-}\right)$by zero? $\left[\mathrm{d}^{2} \mathrm{f}(\mathrm{t}) / \mathrm{dt}^{2}\right]+5[\mathrm{df}(\mathrm{t}) / \mathrm{dt}]+6 \mathrm{f}(\mathrm{t})=10$
Option A:	$\left[\mathrm{S}^{2} \mathrm{~F}(\mathrm{~s})+5 \mathrm{~s} \mathrm{~F}(\mathrm{~s})+6 \mathrm{~F}(\mathrm{~s})\right]=10 / \mathrm{s}$
Option B:	$\left[\mathrm{S}^{2} \mathrm{~F}(\mathrm{~s})+5 \mathrm{sF}(\mathrm{s})-6 \mathrm{~F}(\mathrm{~s})\right]=10 / \mathrm{s}$
Option C:	$\left[\mathrm{S}^{2} \mathrm{~F}(\mathrm{~s})-5 \mathrm{sF}(\mathrm{s})+6 \mathrm{~F}(\mathrm{~s})\right]=10 / \mathrm{s}$
Option D:	$\left[\mathrm{S}^{2} \mathrm{~F}(\mathrm{~s})-5 \mathrm{sF}(\mathrm{s})-6 \mathrm{~F}(\mathrm{~s})\right]=10 / \mathrm{s}$
6.	What is an ideal value of network function at poles?
Option A:	Zero
Option B:	Nonzero
Option C:	Infinity
Option D:	Unity
7.	The realization of driving point immitance functions of networks can be done by any of the forms which are not used from following
Option A:	Foster I
Option B:	Foster II
Option C:	Cauer I
Option D:	Curier II
8.	Which among the following represents the precise condition of reciprocity for transmission parameters?
Option A:	AD-BC=0
Option B:	$\mathrm{AC}-\mathrm{BD}=1$
Option C:	$\mathrm{AD}-\mathrm{BC}=1$
Option D:	$\mathrm{BC}-\mathrm{AD}=1$
9.	The relation between $\mathrm{Z}_{\mathrm{OT}}, \mathrm{Z}_{\mathrm{oc}}, \mathrm{Z}_{\mathrm{sc}}$ is?
Option A:	$\mathrm{Z}_{\mathrm{OT}}=\sqrt{ } \mathrm{Z}_{\mathrm{oc}} \mathrm{Z}_{\mathrm{sc}}$
Option B:	$\left.\mathrm{Z}_{\mathrm{oc}}=\sqrt{(} \mathrm{Z}_{\mathrm{OT}} \mathrm{Z}_{\mathrm{sc}}\right)$
Option C:	$\mathrm{Z}_{\mathrm{sc}}=\sqrt{ }\left(\mathrm{Z}_{\mathrm{OT}} \mathrm{Z}_{\mathrm{oc}}\right)$
Option D:	$\mathrm{Z}_{\mathrm{oc}}=\sqrt{ }\left(\mathrm{Z}_{\mathrm{OT}} \mathrm{Z}_{\mathrm{oc}}\right)$
10.	In determining Hybrid parameters, among $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{I}_{1}, \mathrm{I}_{2}$, which of the following

	are dependent variables?
Option A:	V_{1} and V_{2}
Option B:	I_{1} and I_{2}
Option C:	V_{1} and I_{2}
Option D:	I_{1} and V_{2}
11.	The Laplace transform of a unit-ramp function starting at $\mathrm{t}=\mathrm{a}$ is
Option A:	$\frac{1}{(s+a)^{2}}$
Option B:	$\frac{e^{-a s}}{(s+a)^{2}}$
Option C:	$\frac{e^{-a s}}{s^{2}}$
Option D:	$\frac{a}{s^{2}}$
12.	 Fig. 7.4 Above pole zero diagram indicates which function
Option A:	RC
Option B:	LC
Option C:	RL
Option D:	RLC
13.	A system is represented by the transfer function $10 /(\mathrm{S}+2)(\mathrm{s}+1)$, The dc gain of this system is
Option A:	1
Option B:	5
Option C:	10
Option D:	2
14.	The transfer function of a low-pass RC network is

Option A:	$(R C s)(1+R C s)$
Option B:	$\frac{R C s}{1+R C s}$
Option C:	$\frac{1}{1+R C s}$
Option D:	$\frac{s}{1+R C s}$
15.	The input ports of two networks are connected in series and the output ports are connected in parallel ,then resultant h-parameter matrix is the ---------- of h-parameter matrices of each individual two-port network
Option A:	Substraction
Option B:	Division
Option C:	Multiplication
Option D:	Sum
16.	For a two-port network to be reciprocal
Option A:	$\mathrm{z} 11=\mathrm{z} 22$
Option B:	$\mathrm{y} 21=\mathrm{y} 12$
Option C:	$\mathrm{h} 21=\mathrm{h} 12$
Option D:	$\mathrm{AD}-\mathrm{BC}=0$
17.	The number of roots of $\mathrm{s}^{3}+5 \mathrm{~s}^{2}+7 \mathrm{~s}+3=0$ in the right half of s-plane is
Option A:	Zero
Option B:	One
Option C:	Two
Option D:	Three
18.	The circuit shown in Fig. is
Option A:	Cauer I form
Option B:	Cauer II form
Option C:	Foster I form
Option D:	Foster II form
19.	From below functions which is positive real function
Option A:	$F(s)=\frac{s^{3}+5 s}{s^{4}+2 s^{2}+1}$
Option B:	$F(s)=\frac{s^{2}+s+6}{s^{2}+s+1}$

Option C:	$F(s)=\frac{s^{2}+4}{s^{3}+3 s^{2}+3 s+1}$
Option D:	$F(s)=\frac{s^{3}+6 s^{2}+7 s+3}{s^{2}+2 s+1}$
20.	Find the nominal impedance, cut-off frequency for the network shown in fig.

| Q2 |
| :---: | :--- | :--- |
| $\mathbf{(2 0 ~ M a r k s) ~}$ | Solve any Four out of Six (5 marks each)

Q3 (20 Marks)	
Q.3 A	Solve any Two (5 marks each)
i.	Write short note on Different types of filter
ii.	Determine the transmission parameters for the network shown in Fig.
iii.	Solve any One (10 marks each)
i.	a) Prove that polynomial $P(s)=s^{4}+s^{3}+2 s^{2}+3 s+2$ is not Hurwitz.

	b) Test whether the polynomial $\mathrm{P}(\mathrm{s})=\mathrm{s}^{8}+5 \mathrm{~s}^{6}+2 \mathrm{~s}^{4}+3 \mathrm{~s}^{2}+1$ is Hurwitz by Routh array
ii.	Realise Foster I \& Cauer I forms of the following RC impedance function $Z(s)=\frac{s+4}{(s+2)(s+6)}$

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examination for Direct Second Year Students Commencing from 10 ${ }^{\text {th }}$ April 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III (For DSE Students)
Course Code: ELC304 and Course Name: Electrical Network Analysis and Synthesis Time: 2 hour

Max. Marks: 80
Q1:

Question Number	Correct Option (Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	A
Q2.	B
Q3.	B
Q4	A
Q5	A
Q6	C
Q7	D
Q8.	C
Q9.	A
Q10.	C
Q11.	C
Q12.	B
Q13.	B
Q14.	C
Q15.	D
Q16.	B
Q17.	A
Q18.	C
Q19.	D
Q20.	A

Important steps and final answer for the questions involving numerical example Q2(A):

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.52.

Q2(B):

Solution The current \mathbf{I}_{1} leaves from the dotted end and \mathbf{I}, enters from the dotted end. Hence, mutual inductance M is negative
In the conductively coupled equivalent circuit,
$\mathbf{Z}_{1}=j \omega\left(L_{1}-M\right)=j \omega L_{1}-j \omega M=j 3-j 2=j 1 \Omega$
$\mathbf{Z}_{2}=j \omega\left(L_{2}-M\right)=j \omega L_{2}-j \omega M=j 5-j 2=j 3 \Omega$
$\mathbf{Z}_{3}=j \omega M=j 2 \Omega$
The conductively coupled equivalent circuit is shown in Fig. 4.76.

Q2(C):
Solution At $t=0$, the network attains steady-state condition. Hence, the capacitor acts as an open circuit.

$$
v_{C}\left(0^{-}\right)=30 \mathrm{~V}
$$

$$
i\left(0^{-}\right)=0
$$

At $t=0^{+}$, the network is shown in Fig. 6.27.
At $t=0^{+}$, the capacitor acts as a voltage source of 30 v

$$
\begin{aligned}
v_{C}\left(0^{+}\right) & =30 \mathrm{~V} \\
i\left(0^{+}\right) & =-\frac{30}{30}=-1 \mathrm{~A}
\end{aligned}
$$

For $t>0$, the network is shown in Fig. 6.28 .
$-10 i-20 i-\frac{1}{1 \times 10^{-6}} \int_{0}^{t} i d t-30=0$
...(i)
$-30 \frac{d i}{d t}-10^{6} i=0 \quad$...(ii)
At $t=0^{*}, \quad-30 \frac{d i}{d t}\left(0^{+}\right)-10^{6} i\left(0^{+}\right)=0$ $\frac{d i}{d t}\left(0^{+}\right)=\frac{10^{6}(-1)}{30}=0.33 \times 10^{5} \mathrm{~A} / \mathrm{s}$
At $t=0^{+}$,

$$
\begin{aligned}
& -30 \frac{d i}{d t}\left(0^{+}\right)-\frac{d^{2} i}{d t^{2}}\left(0^{+}\right)=0 \\
& \frac{d^{2} i}{d t^{2}}\left(0^{+}\right)=1800 \mathrm{~A} / \mathrm{s}^{2}
\end{aligned}
$$

Q2(D):
Solution At $t=0$, the capacitor is uncharged. Hence, it acts as a short circuit
$v_{C}\left(0^{-}\right)=0$
$i_{c}\left(0^{-}\right)=0$
At $t=0^{+}$, the network is shown in Fig. 6.130.
Since voltage across the capacitor cannot change
instantaneously,

$i_{C}\left(0^{+}\right)=1.02 \mathrm{~m} \times \frac{1 \mathrm{k}}{1 \mathrm{k}+4 \mathrm{k}}=0.204 \mathrm{~mA}$
For $t>0$, Thevenin's equivalent network is shown in Fig. 6.132.
Writing the KCL equation for $t>0$.
Writing we KcL

$$
\begin{aligned}
3 \times 10^{-6} \frac{d v_{C}}{d t}+\frac{v_{C}-1}{4.9 \times 10^{3}} & =0 \\
\frac{d v_{C}}{d t}+68.02 v_{C} & =68.02
\end{aligned}
$$

Fig. 6.131

Fig. 6.132

Q2(E)
Solution At $t=0^{-}$, the network is shown in Fig 7.54. At
$t=0^{-}$, the switch is closed and steady-state condition is achieved $=0$, the switch is closed and steady-state condition is achieved.
Hence, the capacitor acts as an open circuit and the in Hence, the capacitor acts as an open circuit and the inductor acts a ($(0)=1 \mathrm{~V}$ $i\left(0^{-}\right)=1$
Since current through the inductor and voltage across the
capacitor cannot change instantaneously,
$i\left(0^{\circ}\right)=1 \mathrm{~A}$

For $t>0$, the transformed network is shown in Fig 7.55
For $r>0$, KVL to the mesh for $t>0$,
$\frac{1}{s}-\frac{1}{s} I(s)-0.5 s I(s)+0.5-I(s)=0$

$$
0.5+\frac{1}{s}=\frac{1}{s} I(s)+0.5 s I(s)+I(s)
$$

$I(s)\left[1+\frac{1}{s}+0.5 s\right]=0.5+\frac{1}{s}$
$I(s)=\frac{s+2}{s^{2}+2 s+2}=\frac{(s+1)+1}{(s+1)^{2}+1}=\frac{s+1}{(s+1)^{2}+1}+\frac{1}{(s+1)^{2}+1}$
Taking the inverse Laplace transform,

$$
i(t)=e^{-t} \cos t+e^{-t} \sin t \quad \text { for } t>0
$$

Fig. 7.54
$i(t)=e^{-t} \cos t+e^{-t} \sin t$

Substituting Eq. (ii) in Eq. (i),

$$
\begin{aligned}
I_{1} & =\frac{s+1}{s}\left[(s+1) V_{2}-I_{2}\right]-V_{2} \\
& =\left[\frac{(s+1)^{2}}{s}-1\right] V_{2}-\frac{s+1}{s} I_{2} \\
& =\left(\frac{s^{2}+s+1}{s}\right) V_{2}-\left(\frac{s+1}{s}\right) I_{2}
\end{aligned}
$$

Comparing Eqs (ii) and (iii) with $A B C D$ parameter equations,

$$
\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left[\begin{array}{cc}s+1 & 1 \\ \frac{s^{2}+s+1}{s} & \frac{s+1}{s}\end{array}\right]
$$

Q3(A3):

Q3(B1-a):

Solution Even part of $P(s)=m(s)=s^{4}+2 s^{2}+2$
Odd part of $P(s)=n(s)=s^{3}+3 s$

$$
Q(s)-\frac{m(s)}{n(s)}
$$

By continued fraction expansion,

$$
\begin{aligned}
& \left.s^{3}+3 s\right) s^{4}+2 s^{2}+2(s \\
& \frac{s^{4}+3 s^{2}}{\left.-s^{2}+2\right) s^{3}+3 s(-s}
\end{aligned}
$$

$$
s^{3}-2 s
$$

$$
5 s)-s^{2}+2\left(-\frac{1}{5} s\right.
$$

$$
-s^{2}
$$

$$
2 \cdot) \cdot\left(\frac{s}{2}\right.
$$

$$
\frac{5 s}{0}
$$

Since two quotient terms are negative, $P(s)$ is not Hurwitz.
Q3(B1-b):

Solution The given polynomial contains even functions only.
The Routh array is given by,

s^{8}	1	5	2	3	1
s^{7}	8	30	8	6	0
s^{6}	1.25	1	2.25	1	
s^{5}	23.6	-6.4	-0.4	0	
s^{4}	1.33	2.27	1		
s^{3}	-46.6	-18.14	0		
s^{2}	1.75	1			
s^{1}	8.49				
s^{0}	1				

Since there is a sign change in the first column of the array, the polynomial is not Hurwitz
Q3(B2):

Solution

Caver I Form The Cauer I form is obtained by continued fraction expansion of $Z(s)$ about the pole at
infinity. In the above function, the degree of the numerator is less than the degree of the denominator which
indicates presence of a zero at infinity. Hence, the admittance function $Y(s)$ has a pole at infinity
By continued fraction expansion, $\quad Y(s)=\frac{{ }^{2}+8}{s+4}$
By
$s+4) s^{2}+8 s+12(s \leftarrow Y$
 admittances are connected in parallel branches. The network is show in Fig. 10.55.
Foster I Form The Foster I form is obtained by partial fraction

$$
Z(s)=\frac{s+4}{(s+2)(s+6)}
$$

$$
Z(s)=\frac{s+4}{(s+2)(s+6)}
$$

Fig. 10.56
By partial-fraction expansion,

$$
Z(s)=\frac{K_{1}}{s+2}+\frac{K_{2}}{s+6}
$$

where $\quad K_{1}=\left.(s+2) Z(s)\right|_{s=-2}=\frac{(-2+4)}{(-2+6)}=\frac{1}{2}$

$$
K_{2}=\left.(s+6) Z(s)\right|_{s=-6}=\frac{(-6+4)}{(-6+2)}=\frac{1}{2}
$$

$$
Z(s)=\frac{\frac{1}{2}}{s+2}+\frac{\frac{1}{2}}{s+6}
$$

$$
\begin{aligned}
& \text { These two terms represent the impedance of a parallel } R C \text { circuit for which } \\
& \text { Ther }
\end{aligned}
$$

$$
Z_{R C}(s)=\frac{\frac{1}{C_{i}}}{s+\frac{1}{R_{i} C_{i}}}
$$

By direct comparison,

$$
\begin{array}{ll}
R_{1}=\frac{1}{4} \Omega, & C_{1}=2 \mathrm{~F} \\
R_{2}=\frac{1}{12} \Omega, & C_{2}=2 \mathrm{~F}
\end{array}
$$

10.56.

