University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examination for Direct Second Year Students Commencing from $10{ }^{\text {th }}$ April 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III (For DSE Students)
Course Code: ELC302 and Course Name: Electronic Devices and Circuits I
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The $P N$ junction allows current flow when
Option A:	p-type is more positive than the n-type
Option B:	n-type is more positive than the p-type
Option C:	both the n-type and p-type have the same positive potential
Option D:	both the n-type and p-type have the same negative potential
2.	In a PN junction the potential barrier is due to the charges on either side of the junction, these charges are
Option A:	Majority carriers
Option B:	Minority carriers
Option C:	Majority and minority carriers
Option D:	Fixed donor and acceptor ions
3.	Which of the following statement is incorrect?
Option A:	Output of CE amplifier is out of phase with respect to its input
Option B:	CC amplifier is a voltage buffer
Option C:	CB amplifier is a voltage buffer
Option D:	CE amplifier is used as an audio (low frequency) amplifier
4.	The Hybrid-parameters analysis gives correct results for
Option A:	large signals only
Option B:	small signals only
Option C:	both large and small signals
Option D:	Not large nor small signals
5.	How many h-parameters are there for a transistor?
Option A:	Two

Option B:	Three
Option C:	Four
Option D:	Five
6.	The hfe parameter is called \qquad in CE arrangement with output short circuited.
Option A:	Voltage Gain
Option B:	Current gain
Option C:	Input impedance
Option D:	Output impedance
7.	How many h-parameters of a transistor are dimensionless?
Option A:	Four
Option B:	Two
Option C:	Three
Option D:	One
8.	In bipolar junction transistor (BJT) the Early effect is due to :-
Option A:	Decrease in width of the emitter due to reverse bias of collector-to-base junction
Option B:	Decrease in width of the base due to reverse bias of collector-to-base junction
Option C:	Decrease in width of collector due to reverse bias of collector-to-base junction
Option D:	Temperature variations resulting in thermally generated minority carriers
9.	In PNP bipolar junction transistor (BJT), stream of current in active region is due to :-
Option A:	Drift of holes
Option B:	Drift of electrons
Option C:	Diffusion of holes
Option D:	Diffusion of electrons
10.	In a bipolar junction transistor (BJT) if $\beta=100 \&$ collector current (IC) is 30 mA then what is the value of base current (IB) ?
Option A:	0.3 mA
Option B:	0.03 mA
Option C:	$30 \mu \mathrm{~A}$
Option D:	$0.3 \mu \mathrm{~A}$
11.	In bipolar junction transistor (BJT) which mode of operation is not commonly used in real life applications?
Option A:	The inverse / reverse mode of operation
Option B:	The cut-off mode of operation
Option C:	The saturation mode of operation
Option D:	The forward active / linear mode of operation
12.	The MOSFET is almost ideal as switching device because
Option A:	It has longer life
Option B:	It works progressively
Option C:	It consumes low power
Option D:	It has linear characteristics

13.	MOSFET turn on when
Option A:	VGS $>$ VT
Option B:	VGS $<$ VT
Option C:	VGS=0
Option D:	VDS $=\mathrm{VT}$
14.	The small signal output resistance of r_{0} of MOSFET is
Option A:	$\left[\lambda \mathrm{I}_{\mathrm{DO}}\right]^{-2}$
Option B:	$\left[\lambda \mathrm{I}_{\mathrm{DO}}\right]^{-1}$
Option C:	$\left[\lambda \mathrm{I}_{\mathrm{DO}}\right]^{-3}$
Option D:	$\left[\lambda \mathrm{I}_{\mathrm{DO}}\right]^{+1}$
15.	Which of the following device has the highest input impedance?
Option A:	JFET
Option B:	MOSFET
Option C:	Crystal Diode
Option D:	BJT
16.	What is the equation of VG for n -channel E-MOSFET in Voltage divider bias configuration?
Option A:	$\mathrm{VG}=[\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)] \mathrm{VDS}$
Option B:	$\mathrm{VG}=[\mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2)] \mathrm{VDD}$
Option C:	$\mathrm{VG}=[\mathrm{R} 1 \mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)] \mathrm{VDS}$
Option D:	$\mathrm{VG}=[\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)] \mathrm{VDD}$
17.	Biasing used in E- MOSFET
Option A:	Fixed bias, self-bias, collector to Base bias, voltage divider bias
Option B:	Fixed bias, collector to Base bias, voltage divider bias
Option C:	Feedback bias ,voltage divider bias
Option D:	Self-bias, collector to Base bias, voltage divider bias
18.	In MOSFET, which terminal is electrically isolated from the entire device structure?
Option A:	Source (S)
Option B:	Drain (D)
Option C:	Gate (G)
Option D:	Bulk or Body or Substrate (SS)
19.	Which is the most suitable biasing circuit for CE Amplifier design?
Option A:	Fixed Bias
Option B:	Fixed bias with R_{E}
Option C:	Collector to base bias
Option D:	Voltage divider bias
20.	In design of filters, which of these has the lowest
Option A:	Capacitor (C) Filter
Option B:	Inductor (L) Filter

Option C:	Inductor \& Capacitor (L-C) Filter
Option D:	C-L-C or ' π ' Filter

$\begin{gathered} \text { Q2 } \\ \text { (20 Marks) } \end{gathered}$	
Q. 2 A)	Solve any two out of three (5 marks each)
1.	Describe the V-I characteristic of P-N Junction diode with neat labeled diagram.
2.	The DC load line of fixed bias is shown in fig below Determine the required value of VCC, RC and RB for the fixed Bias circuit. Fig. 1
3.	Explain Bias compensation for BJT(bipolar Junction Transistor).
Q. 2 B)	Solve any one question out of two (10 marks each)
1	Design single stage CE amplifier for the following specification $A V \geq 100$, $\mathrm{Vo}=2.5 \mathrm{~V} \mathrm{f}_{\mathrm{L}}=20 \mathrm{~Hz}$, stability factor $\mathrm{S}=10$, use transistor BC147A.hfe $=220$, hie $=2.7 \mathrm{~K} \Omega$ and $\mathrm{V}_{\text {CESAT) }}=0.25 \mathrm{~V}$
2.	For the circuit shown below in Fig. 2, calculate Av, Ri, Ro.

Q3. (20 Marks)	Solve any Two Questions out of Three (10 marks each)
For the given BJT circuit in fig 3.a, find Voltage Gain, Input Resistance and	
output resistance.	

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examination for Direct Second Year Students Commencing from 10 ${ }^{\text {th }}$ April 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III (For DSE Students)
Course Code: ELC302 and Course Name: Electronic Devices and Circuits I

Q1:

Question Number	Correct Option Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	A
Q2.	D
Q3.	C
Q4	B
Q5	C
Q6	B
Q7	B
Q8.	B
Q9.	C
Q10.	A
Q11.	C
Q12.	A
Q13.	B
Q14.	B
Q15.	D
Q16.	C
Q17.	C
Q18.	D
Q19.	

Q20.	D

Important steps and final answer for the questions involving numerical example

Q2(A)(2):
Q.2.2.) For the Fixed Bias circuit A) From the Load Line, we get

$$
\begin{aligned}
{[V C C} & \left.=16 \mathrm{~V} I_{C \max }=S m A\right] \\
\therefore R_{B} & =\frac{V C C-V_{B E}}{I_{B Q}} \\
& =\frac{16-0.7}{20 \mu \mathrm{~A}} \\
R_{B} & =765 \mathrm{k} \Omega \\
R C & =\frac{V C C-V C E}{I C Q} \\
R C & =\frac{16-8}{4 m A} \\
R C & =2 \mathrm{k} \Omega
\end{aligned}
$$

Q.2(B) (2):-

- DC Analysis

$$
\begin{aligned}
& V_{G S Q}=V_{G}-V_{S}=V G-I_{D} R_{S} \\
& V G_{1}=\frac{R_{2}}{R_{1}+R_{2}} \times V D=\frac{10}{40+10} \times 30 . \\
& V G=6 v \longrightarrow \text { (i) } \\
& V G_{B Q}=\left(6-1.2 I_{D Q}\right) . \\
& I_{D Q}=k\left[V_{G S Q}-V_{T}\right]^{2} \\
& =04\left[6-1 \cdot 2 I_{D Q}-3\right]^{2} \\
& I_{D Q}=0.4\left[9-7.2 I_{D Q}-1.44 I_{D Q}^{2}\right] \\
& 1.44 I_{D Q}^{2}-9.7 I_{D Q}+9=0 \\
& I_{D Q}=1.11 \mathrm{~mA} \rightarrow(2) \\
& \text { VGSQ }=6-(1.2 \times 1+11)=4665 \mathrm{Y} \rightarrow \text { (3) } \\
& g_{m}=2 k\left(V^{\prime \prime} \varphi^{-}-V_{T}\right) \\
& =2 \times 04(4 \cdot 665-3) \text {. } \\
& g^{m}=1.33 \mathrm{mAlv} \rightarrow \text { (4). }
\end{aligned}
$$

$A C$ Analayfis \rightarrow Draw Small signal eq ckl

$$
\begin{aligned}
& R_{j}=R_{1}\left\|R_{2}=40\right\| 110 \\
& R_{1}=8 \mathrm{M} \Omega .
\end{aligned}
$$

$R_{0}=\|d\| R_{D}=40 \mathrm{k} \| 3.3 \mathrm{~K}$.

$$
R_{0}=3.048 \mathrm{k} \Omega
$$

$$
\begin{aligned}
A_{v} & =-g m\left(9 d \| R_{D}\right) \\
& =-1.33(40 \mathrm{k} \| 3.3 \mathrm{k})
\end{aligned}
$$

$$
A v=-4.054 .
$$

Q.3 A). Given $\Rightarrow \beta=150 \quad V A=\infty$
$D C$ Analayis
$V_{\text {th }}=\frac{R_{2}}{R_{1}+R_{2}} V C C=\frac{16}{68+16} \times 12=2.29 \mathrm{~V}$

$$
R_{B}=R_{1} \| R_{2}=12.95 \mathrm{ke}
$$

$$
I_{B Q}=\frac{V_{H}-V_{B E}}{R_{B}+(1+\beta) R_{E}}=9.7 \mu \mathrm{~A}
$$

$$
I_{C \varphi}=\beta I_{B \varphi}=1.47 \mathrm{~mA}
$$

$$
V T=26 \mathrm{mv} \quad r_{i}=\frac{V_{T \beta}}{I C Q}=2.67 \mathrm{k} \Omega
$$

$$
g_{m}=\frac{I_{c Q}}{V_{T}}=56.15 \mathrm{~mA} / \mathrm{v} .
$$

$$
r_{0}=\frac{V A}{I_{C Q}}=\infty
$$

Small Signal Analusis.
Draw the Small signad model

Q.3(B)
Q.3B) E-MOSFET voltage divider Biasing

$$
K_{n}=\frac{I_{0}(O N)}{\left[V_{G_{B}(O N)}-V_{G_{1}(T H)}\right]^{2}}=\frac{3 \mathrm{~mA}}{[10-5]^{2}}=0
$$

$$
\text { , VGS }=V_{T H}-I_{D R S}=18-0 \text { S2I } I_{D} \rightarrow \text { (2) }
$$

$$
\begin{aligned}
& V_{G S}=V_{T H}\left[V_{G S}-V_{G S}(T H)\right]^{2} \longrightarrow(3) \\
& I_{D}=k_{n}
\end{aligned}
$$

$$
\begin{aligned}
& I_{0}=K_{n}\left[18-0.82 I_{D}-5\right]^{2} \rightarrow(4) \\
& I_{0}=0.12[18.725 \mathrm{~mA} .
\end{aligned}
$$

$$
\text { Hence } I_{0}=6.725 \mathrm{~mA} \text { - (5) }
$$

$$
\begin{aligned}
& \text { Hence } I_{D}=0 . I_{D}(\text { ROtRs })=40-6.725[3+0 . \mathrm{s}: \\
& V_{D S}=V_{D D}-I_{D} .31 \mathrm{~V} \\
& V D S=1.31 \mathrm{~V} .725 \mathrm{mn}]
\end{aligned}
$$

$$
\begin{aligned}
& =V D S=14.31 \mathrm{VF} \\
& Q[V D S I D]=[14.31 \mathrm{~V}, 6.725 \mathrm{mn}] .
\end{aligned}
$$

$k_{j}=a_{\pi}=2.67 \mathrm{k} \Omega$
$R_{i}^{!}=R_{B}\left\|R_{i}=2.67 \mathrm{k}\right\| 12.95 \mathrm{~K}=2.21 \mathrm{k} \Omega$

$$
R_{0}=\infty
$$

$$
R_{0}=R_{C}=3.3 \mathrm{k} .
$$

$$
A_{v}=\frac{V_{0}}{V_{i}}=\frac{-g m V_{\pi} R_{C_{c}}}{V_{i}}
$$

$$
=-g m R C
$$

$$
=-56.15 \times 3.3
$$

$$
A v=-185.3
$$

