University of Mumbai

Examination 2021 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: DSE Semester III

Course Code: ECC303 and Course Name: Digital System Design

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	The decimal equivalent of hex number 1A53 is
Option A:	$(2053)_{10}$
Option B:	(6739) ₁₀
Option C:	$(2050)_{10}$
Option D:	(6736) ₁₀
2.	Which one of the following statements best describes the operation of a negative
	edge triggered D flip flop?
Option A:	The logic level at D input is transferred to Q at the negative edge of the clock
Option B:	The Q output is always identical to the clock input if the D input is high
Option C:	The Q output is always equal to the D input when the clock is positive
Option D:	The Q output is always equal to the D input
3.	In a J K hip hop, we have $J = Q$ and $K = 1$. Assume the hip hop was initially cleared and then clocked for 6 pulses, the sequence at the output will be $ \begin{bmatrix} J & Q \\ J & Q \\ I & K \\ C & \overline{Q} \end{bmatrix} $
Option A:	010000
Option B:	011001
Option C:	010010
Option D:	010101
•	
4.	In a positive edge triggered JK flip flop, a low J and low K produces?
Option A:	High state

Option B:	Low state	
Option C:	Toggle state	
Option D:	No Change State	
5.	Decimal 43 in Hexadecimal and BCD number system is respectively	
Option A:	B2, 0100 0011	
Option B:	2B, 0100 0011	
Option C:	2B, 0011 0100	
Option D:	B2, 0100 0100	
6.	On subtracting (01010)2 from (11110)2 using 1's complement, we get	
Option A:	01001	
Option B:	11010	
Option C:	10101	
Option D:	10100	
7.	The Boolean expression Y= AB+CD is to be realized using only 2 input NAND gates. The minimum number of gates required is	
Option A:	2	
Option B:	3	
Option C:	4	
Option D:	5	
8.	For the circuit shown below, the output F is given by	
Option A:	F=1	
Option B:	F=0	
Option C:	F=X	
Option D:	F=X'	
9.	The output of a logic gate is '1' when all its inputs are at logic '0'. The gate is either	
Option A:	a NAND or an EX-OR gate	
Option B:	a NOT or an EX-NOR gate	
Option C:	an OR or an EX-NOR gate	
Option D:	an AND or an EX-OR gate	
10.	The canonical sum of product form of the function $y(C,D) = C + D$ is	
Option A:	CD + DD + C'C	

Option B:	CD + CD' + C'D		
Option C:	DC + DC' + C'D'		
Option D:	CD' + C'D + C'D'		
1			
11.	Complement of the expression $A'B + CD'$ is		
Option A:	(A' + B)(C' + D)		
Option B:	(A + B')(C' + D)		
Option C:	(A' + B')(C' + D)		
Option D:	(A' + B')(C' + D')		
12			
12.	If each successive code differs from its preceding code by a single bit only then		
Oution A.	DCD as to		
Option A:			
Option B:	Weighted code		
Option C:	Gray code		
Option D:	Binary code		
13.	The bit sequence 0010 is serially entered (right-most bit first) into a 4-bit parallel		
101	out shift register that is initially clear. What are the O outputs after two clock		
	pulses?		
Option A:	0000		
Option B:	0010		
Option C:	1000		
Option D:	1111		
-			
14.	Which of the following describes the structure of a VHDL code correctly?		
Option A:	Library Declaration; Configuration; Entity Declaration; Architecture Declaration		
Option B:	Library Declaration; Entity Declaration; Architecture Declaration; Configurations		
Option C:	Library Declaration; Entity Declaration; Configuration; Architecture Declaration		
Option D:	Library Declaration; Configuration; Architecture Declaration; Entity Declaration		
15.	The difference between a PLA and a PAL is		
Option A:	the PAL has a programmable OR plane and a programmable AND plane, while the PLA only has a programmable AND plane		
Option B:	the PLA has a programmable OR plane and a programmable AND plane, while		
	the PAL only has a programmable AND plane		
Option C:	the PAL has more possible product terms than the PLA		
Option D:	PALs and PLAs are the same thing.		
16.	Which of the following cannot be an output of a magnitude comparator		
Option A:	A < B		
Option B:	A > B		
Option C:	A – B		
Option D:	A=B		
17.	The number of flip-flops required to construct an 8-bit shift register will be		
Option A:			
Option B:	16		
Option C:	4		
Option D:	8		
L			

18.	Which of the following VHDL design units contain the description of the circuit?	
Option A:	Configurations	
Option B:	Architecture	
Option C:	Library	
Option D:	Entity	
19.	The addition of binary numbers 10011011010 and 010100101 is	
Option A:	10101111111	
Option B:	1100110110	
Option C:	10011010011	
Option D:	0111001000	
20.	A product term containing all K variables of the function in either complemented	
	or uncomplemented form is called	
Option A:	Minterm	
Option B:	Maxterm	
Option C:	Midterm	
Option D:	Least term	

Q2.	Answer the following:	
А	Solve any Two 5 marks e	ach
i.	Convert J-K flip flop to D flip flop.	
ii.	Prove that NAND and NOR gates are universal gates.	
iii.	Compare PAL with PLA.	
В	Solve any One 10 marks e	ach
i.	What is a shift register? Explain working of Serial In Serial Out shift register?	
ii.	Minimize the following expression using Quine McClusky technique. F (A, B, C, D) = $\sum m$ (1,3,7,11,15) + d (0,2,5)	

Q3.	Answer the following:	
Α	Solve any Two 5 mar	ks each
i.	Convert $(365.24)_8$ into decimal, binary and hexadecimal.	
ii.	Write VHDL code for the full subtractor.	
iii.	For the given minterms, obtain the simplified POS expression	
	$F(A, B, C, D) = \sum m (2,3,5,7,12) + d(6, 13, 14, 15)$	
В	Solve any One 10 mar	ks each
i.	With the help of a truth table explain the full adder circuit and imple	ment it
	using logic gates.	
ii.	Design 3 bit binary to gray code converter.	

University of Mumbai

Examination 2021 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: DSE Semester III

Course Code: ECC303 and Course Name: Digital System Design

Time: 2 hour

Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	А
Q3.	D
Q4.	D
Q5.	В
Q6.	D
Q7.	В
Q8.	В
Q9.	В
Q10.	В
Q11.	В
Q12.	С
Q13.	С
Q14.	В
Q15.	В
Q16.	С
Q17.	D
Q18.	В
Q19.	А
Q20.	A