University of Mumbai

Examination 2021 under cluster 5 (Lead College: APSIT)
Examinations Commencing from 10 ${ }^{\text {th }}$ April 2021 to $17^{\text {th }}$ April 2021
Program: Bachelor of Engineering
Curriculum Scheme: Electronics \& Telecommunication (Rev2019 'C'Scheme)
Examination: DSE Semester III
Course Code: ECC303 and Course Name: Digital System Design

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	The decimal equivalent of hex number 1A53 is
Option A:	(2053) ${ }_{10}$
Option B:	$(6739)_{10}$
Option C:	$(2050)_{10}$
Option D:	(6736) ${ }_{10}$
2.	Which one of the following statements best describes the operation of a negative edge triggered D flip flop?
Option A:	The logic level at D input is transferred to Q at the negative edge of the clock
Option B:	The Q output is always identical to the clock input if the D input is high
Option C:	The Q output is always equal to the D input when the clock is positive
Option D:	The Q output is always equal to the D input
3.	In a J K flip flop, we have $\mathrm{J}=\mathrm{Q}^{\prime}$ and $\mathrm{K}=1$. Assume the flip flop was initially cleared and then clocked for 6 pulses, the sequence at the output will be
Option A:	010000
Option B:	011001
Option C:	010010
Option D:	010101
4.	In a positive edge triggered JK flip flop, a low J and low K produces?
Option A:	High state

Option B:	Low state
Option C:	Toggle state
Option D:	No Change State
5.	Decimal 43 in Hexadecimal and BCD number system is respectively
Option A:	B2, 01000011
Option B:	2B, 01000011
Option C:	2B, 00110100
Option D:	B2, 01000100
6.	On subtracting (01010)2 from (11110)2 using 1's complement, we get
Option A:	01001
Option B:	11010
Option C:	10101
Option D:	10100
7.	The Boolean expression $\mathrm{Y}=\mathrm{AB}+\mathrm{CD}$ is to be realized using only 2 input NAND gates. The minimum number of gates required is
Option A:	2
Option B:	3
Option C:	4
Option D:	5
8.	For the circuit shown below, the output F is given by
Option A:	$\mathrm{F}=1$
Option B:	$\mathrm{F}=0$
Option C:	$\mathrm{F}=\mathrm{X}$
Option D:	$\mathrm{F}=\mathrm{X}$,
9.	The output of a logic gate is ' 1 ' when all its inputs are at logic ' 0 '. The gate is either
Option A:	a NAND or an EX-OR gate
Option B:	a NOT or an EX-NOR gate
Option C:	an OR or an EX-NOR gate
Option D:	an AND or an EX-OR gate
10.	The canonical sum of product form of the function $\mathrm{y}(\mathrm{C}, \mathrm{D})=\mathrm{C}+\mathrm{D}$ is
Option A:	$\mathrm{CD}+\mathrm{DD}+\mathrm{C}^{\prime} \mathrm{C}$

Option B:	CD + CD' + C' ${ }^{\text {d }}$
Option C:	$\mathrm{DC}+\mathrm{DC}^{\prime}+\mathrm{C}^{\prime} \mathrm{D}^{\prime}$
Option D:	$\mathrm{CD}^{\prime}+\mathrm{C}^{\prime} \mathrm{D}+\mathrm{C}^{\prime} \mathrm{D}^{\prime}$
11.	Complement of the expression $\mathrm{A}^{\prime} \mathrm{B}+\mathrm{CD}^{\prime}$ is
Option A:	$\left(\mathrm{A}^{\prime}+\mathrm{B}\right)\left(\mathrm{C}^{\prime}+\mathrm{D}\right)$
Option B:	$\left(\mathrm{A}+\mathrm{B}^{\prime}\right)\left(\mathrm{C}^{\prime}+\mathrm{D}\right)$
Option C:	$\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)\left(\mathrm{C}^{\prime}+\mathrm{D}\right)$
Option D:	$\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)\left(\mathrm{C}^{\prime}+\mathrm{D}^{\prime}\right)$
12.	If each successive code differs from its preceding code by a single bit only then this code is called as
Option A:	BCD code
Option B:	Weighted code
Option C:	Gray code
Option D:	Binary code
13.	The bit sequence 0010 is serially entered (right-most bit first) into a 4-bit parallel out shift register that is initially clear. What are the Q outputs after two clock pulses?
Option A:	0000
Option B:	0010
Option C:	1000
Option D:	1111
14.	Which of the following describes the structure of a VHDL code correctly?
Option A:	Library Declaration; Configuration; Entity Declaration; Architecture Declaration
Option B:	Library Declaration; Entity Declaration; Architecture Declaration; Configurations
Option C:	Library Declaration; Entity Declaration; Configuration; Architecture Declaration
Option D:	Library Declaration; Configuration; Architecture Declaration; Entity Declaration
15.	The difference between a PLA and a PAL is
Option A:	the PAL has a programmable OR plane and a programmable AND plane, while the PLA only has a programmable AND plane
Option B:	the PLA has a programmable OR plane and a programmable AND plane, while the PAL only has a programmable AND plane
Option C:	the PAL has more possible product terms than the PLA
Option D:	PALs and PLAs are the same thing.
16.	Which of the following cannot be an output of a magnitude comparator
Option A:	$\mathrm{A}<\mathrm{B}$
Option B:	$\mathrm{A}>\mathrm{B}$
Option C:	A - B
Option D:	$\mathrm{A}=\mathrm{B}$
17.	The number of flip-flops required to construct an 8-bit shift register will be
Option A:	32
Option B:	16
Option C:	4
Option D:	8

18.	Which of the following VHDL design units contain the description of the circuit?
Option A:	Configurations
Option B:	Architecture
Option C:	Library
Option D:	Entity
19.	The addition of binary numbers 10011011010 and 010100101 is
Option A:	1010111111
Option B:	1100110110
Option C:	10011010011
Option D:	0111001000
20.	A product term containing all K variables of the function in either complemented or uncomplemented form is called
Option A:	Minterm
Option B:	Maxterm
Option C:	Midterm
Option D:	Least term

Q2.	Answer the following:
A	Solve any Two
i.	Convert J-K flip flop to D flip flop.
ii.	Prove that NAND and NOR gates are universal gates.
iii.	Compare PAL with PLA.
B	Solve any One
i.	What is a shift register? Explain working of Serial In Serial Out shift register?
ii.	Minimize the following expression using Quine McClusky technique. F (A, B, C, D) $=\sum \mathrm{m}(1,3,7,11,15)+\mathrm{d}(0,2,5)$

Q3.	Answer the following:
A	Solve any Two
i.	Convert (365.24) $)_{8}$ into decimal, binary and hexadecimal.
ii.	Write VHDL code for the full subtractor.
iii.	For the given minterms, obtain the simplified POS expression F(A, B, C, D) $=\Sigma \mathrm{m}(2,3,5,7,12)+\mathrm{d}(6,13,14,15)$
B	Solve any One
i.	With the help of a truth table explain the full adder circuit and implement it using logic gates.
ii.	Design 3 bit binary to gray code converter.

University of Mumbai

Examination 2021 under cluster 5 (Lead College: APSIT)

Examinations Commencing from $10^{\text {th }}$ April 2021 to $17^{\text {th }}$ April 2021
Program: Bachelor of Engineering
Curriculum Scheme: Electronics \& Telecommunication (Rev2019 'C'Scheme)
Examination: DSE Semester III
Course Code: ECC303 and Course Name: Digital System Design
Time: 2 hour
Max. Marks: 80

Question Number	Correct Option (Enter either ' \mathbf{A}^{\prime} or ' \mathbf{B} or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	B
Q2.	A
Q3.	D
Q4.	D
Q5.	B
Q6.	D
Q7.	B
Q8.	B
Q9.	B
Q10.	B
Q11.	C
Q12.	C
Q13.	B
Q14.	B
Q15.	C
Q16.	D
Q17.	B
Q18.	A
Q19.	A
Q20.	

