University of Mumbai

Examination 2021 under cluster 5 (Lead College: APSIT)
Examinations Commencing from $10{ }^{\text {th }}$ April 2021 to $17^{\text {th }}$ April 2021
Program: Bachelor of Engineering
Curriculum Scheme: Electronics \& Telecommunication (Rev2019 'C'Scheme)
Examination: DSE Semester III
Course Code: ECC304 and Course Name: Network Theory
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	Which of the following conditions delivers maximum power to the load?
Option A:	$\mathrm{R}_{\mathrm{L}}>\mathrm{R}_{\text {TH }}$
Option B:	$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{TH}}$
Option C:	$\mathrm{R}_{\mathrm{L}}<\mathrm{R}_{\text {TH }}$
Option D:	Depends upon source.
2.	A network consists of dependent current source with value $4 \mathrm{~V}_{\mathrm{x}}$. Which type of dependent source it is?
Option A:	Voltage Controlled Current Source
Option B:	Current Controlled Current Source
Option C:	Voltage Controlled Voltage Source
Option D:	Current Controlled Voltage Source
3.	Refer the following figure and determine current I_{1}.
Option A:	0.5 A
Option B:	1 A
Option C:	2 A
Option D:	7 A
4.	Refer the following figure to find voltage Va.

Option A:	2 V
Option B:	8 V
Option C:	18 V
Option D:	1 V
5.	Refer the following figure to find current Ia.
Option A:	3 A
Option B:	2 A
Option C:	1 A
Option D:	0.5 A
6.	If the graph consists of 4 nodes and 6 branches then the number of twigs and number of links are ------ and ------ respectively.
Option A:	5,5
Option B:	4, 4
Option C:	3, 4
Option D:	3, 3
7.	For the graph shown in figure, the number of rows in complete incidence matrix are \qquad

Option A:	5
Option B:	4
Option C:	3
Option D:	6
8.	The number of maximum possible trees for a graph is calculated by ------.
Option A:	N-1
Option B:	$\mathrm{b}-(\mathrm{n}+1)$
Option C:	$b+\mathrm{n}-1$
Option D:	$\mid \mathrm{AA}^{\text {T }}$
9.	Which of the following is the correct generalized KCL equation in graph theory?
Option A:	B. $\mathrm{Z}_{\mathrm{b}} \cdot \mathrm{B}^{\mathrm{T}} \mathrm{I}_{1}=\mathrm{B} . \mathrm{Vs}-\mathrm{B} \cdot \mathrm{Z}_{\mathrm{b}} \mathrm{I}_{\mathrm{s}}$
Option B:	$\mathrm{QY}_{\mathrm{b}} \mathrm{Q}^{\mathrm{T}} . \mathrm{V}_{\mathrm{t}}=\mathrm{Q} \mathrm{I}_{\mathrm{S}}-\mathrm{Q} \mathrm{Y}_{\mathrm{b}} \mathrm{Vs}^{\text {d }}$
Option C:	B. $Z_{\text {b }} \cdot \mathrm{B}^{T} \mathrm{I}_{1}=-\mathrm{B} . \mathrm{Vs}$
Option D:	$\mathrm{QY}_{\mathrm{b}} \mathrm{Q}^{\mathrm{T}} . \mathrm{V}_{\mathrm{t}}=\mathrm{Q} \mathrm{Y}_{\mathrm{b}}+\mathrm{QI}_{\mathrm{s}} \mathrm{Vs}^{\text {d }}$
10.	Refer the following figure and determine current $\mathrm{i}(\mathrm{t})$ in at $\mathrm{t}=0^{-}$.
Option A:	0 A
Option B:	1.25 A
Option C:	1.1 A
Option D:	1 A
11.	If $u(t)$ signal is applied to the $R-C$ network where $R=1 \mathrm{~K} \Omega$ and $C=1 u F$ are connected in series. Calculate RC time constant (τ).
Option A:	3 uSec
Option B:	63.2 mSec

Option C:	1 mSec
Option D:	2 mSec
12.	Time constant of a series connected R-L network is -------.
Option A:	L/R
Option B:	R/L
Option C:	Product of R and L
Option D:	LS
13.	Which of the following represent Voltage across inductors in time domain?
Option A:	$\mathrm{Lx} \frac{d i(t)}{d t}$
Option B:	$\mathrm{L} \int i(t) . d t$
Option C:	Lxi(t)
Option D:	LxI(S)
14.	If the inductor and capacitor are connected in series then equivalent impedance is ---.
Option A:	1/LS + CS
Option B:	S(L+C)
Option C:	LS + 1/CS
Option D:	$\mathrm{S}^{2}(1+1 / \mathrm{LC})$
15.	Pole-zero location of the transfer function $\mathrm{T}(\mathrm{s})$ is shown in the following figure. Determine $\mathrm{T}(\mathrm{s})$.
Option A:	H $\times \frac{(S-1)(S-3)}{(S-2)(S-4)}$
Option B:	$\mathrm{H} \times \frac{(S-2)(S-4)}{(S-1)(S-3)}$
Option C:	$\mathrm{H} \times \frac{(S+1)(S+3)}{(S+2)(S+4)}$
Option D:	H $\times \frac{(S+2)(S+4)}{(S+1)(S+3)}$
16.	A system is represented by transfer function $\mathrm{T}(\mathrm{s})=\frac{18}{(S+3)(S+2)}$, the DC gain of this system is \qquad
Option A:	18
Option B:	3

Option C:	2
Option D:	6
17.	Which among the following represents the precise condition of reciprocity for transmission parameters?
Option A:	$\mathrm{AD}-\mathrm{BC}=1$
Option B:	$\mathrm{AB}-\mathrm{CD}=1$
Option C:	$\mathrm{AC}-\mathrm{BD}=1$
Option D:	$\mathrm{A}=\mathrm{D}$
18.	A two port network is represented by the following equation. $\begin{aligned} & \mathrm{I}_{1}=65 \mathrm{~V}_{2}+86 \mathrm{I}_{2} \\ & \mathrm{~V}_{1}=43 \mathrm{~V}_{2}+24 \mathrm{I}_{2} \end{aligned}$ A and B parameters of the networks are given by \qquad and \qquad respectively.
Option A:	43, 24
Option B:	65, 86
Option C:	65,-86
Option D:	43, -24
19.	Determine Z_{11} and Z_{12} parameters of the following network.
Option A:	$\mathrm{Z}_{11}=15 \Omega, \mathrm{Z}_{12}=-7 \Omega$,
Option B:	$\mathrm{Z}_{11}=17 \Omega, \mathrm{Z}_{12}=15 \Omega$,
Option C:	$\mathrm{Z}_{11}=7 \Omega, \mathrm{Z}_{12}=15 \Omega$,
Option D:	$\mathrm{Z}_{11}=15 \Omega, \mathrm{Z}_{12}=7 \Omega$,
20.	Z parameter of two port network are $Z_{11}=20 \Omega, Z_{22}=30 \Omega$ and $Z_{12}=Z_{21}=10 \Omega$. Then the network is \qquad
Option A:	Reciprocal
Option B:	Non-Reciprocal
Option C:	Symmetrical
Option D:	Neither reciprocal nor symmetrical

Q2.	Answer the following:
A	Solve any One 10 marks each
i.	For the circuit shown in below, find current through 3Ω using superposition theorem.
ii.	For the graph shown in figure find, 1) Complete incidence matrix 2) Reduced incidence matrix 3) f-Tie-set matrix and 4) f-Cutset matrix
B	Solve any two 5 marks each
1.	For the network shown in figure, plot poles and zeros function of $\frac{I 0}{I i}$.
ii.	Derive condition of symmetry for Z parameters.
iii.	Calculate number of possible trees of following graphs.

Q3.	Answer the following :
A	Solve any One 10 marks each
i.	In the network shown in figure, the switch was at $1^{\text {st }}$ position for a long time and then it is moved to $2^{\text {nd }}$ position at $\mathrm{t}=0$. Determine $\mathrm{Vc}(\mathrm{t})$.
ii.	Determine ABCD parameter for the network shown in figure.
B	Solve any One 10 marks each
i.	The switch in the network shown was opened for a long time, then it is closed at $\mathrm{t}=0$. Determine the voltage across the capacitor using Laplace.
ii.	Write any five necessary conditions for driving point functions and transfer functions.

University of Mumbai

Examination 2021 under cluster 5 (Lead College: APSIT)
Examinations Commencing from $10{ }^{\text {th }}$ April 2021 to $17^{\text {th }}$ April 2021
Program: Bachelor of Engineering
Curriculum Scheme: Electronics \& Telecommunication (Rev2019 'C'Scheme)
Examination: DSE Semester III
Course Code: ECC304 and Course Name: Network Theory
Time: 2 hour

Question Number	Correct Option (Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	B
Q2.	A
Q3.	C
Q4.	D
Q5.	B
Q6.	D
Q7.	C
Q8.	D
Q9.	B
Q10.	C
Q11.	A
Q12.	A
Q13.	C
Q14.	C
Q15.	B
Q16.	A
Q17.	D
Q18.	D
Q19.	A
Q20.	

