University of Mumbai

Examination 2020 under cluster 3 (Lead College: FCRIT)

Program: FE

Curriculum Scheme: Rev2019
Examination: FE Semester II
Course Code: FEC203 Course Name: Engineering chemistry II
Time: $\mathbf{1} \frac{1}{2}$ hour
Max. Marks:

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	Selection rule to produce rotational spectra is
Option A:	Dipole moment of molecule must change during vibrations
Option B:	Molecule must have permanent dipole moment
Option C:	Presence of chromophore in a molecule
Option D:	Presence of unpaired electron in a molecule
2.	Benzene is an important industrial solvent which is classified as
Option A:	Non-toxic
Option B:	Non-flammable
Option C:	Biodegradable
Option D:	Carcinogenic
3.	Which of the following statement is incorrect about an electrochemical cell
Option A:	Oxidation occurs at anode and reduction at cathode
Option B:	Chemical energy is converted into electrical energy
Option C:	Cell can work indefinitely
Option D:	Salt bridge maintains electrical neutrality of the electrolytes
4.	If a metal rod exhibits holes on its surface, the type of corrosion is
Option A:	Waterline
Option B:	Galvanic
Option C:	Pitting
Option D:	Stress
5.	A good fuel has
Option A:	Low ignition temperature and high calorific value
Option B:	Low ignition temperature and low calorific value
Option C:	High ignition temperature and high calorific value
Option D:	Moderate ignition temperature and high calorific value
6.	Spin multiplicity for the two unpaired electrons in excited singlet state is
Option A:	3
Option B:	2
Option C:	1

Option D:	4
7.	Cell reaction will be spontaneous if its Emf is
Option A:	Positive
Option B:	Negative
Option C:	Zero
Option D:	Fixed
8.	Proximate analysis of coal is used to determine
Option A:	\% of Nitrogen
Option B:	\% of Sulphur
Option C:	\% of Hydrogen
Option D:	\% of Moisture
9.	Season cracking and Caustic embrittlement are special case of
Option A:	Chemical corrosion
Option B:	Stress corrosion
Option C:	Concentration cell corrosion
Option D:	Waterline corrosion
10.	Which is not an application of Flame Photometry
Option A:	Analysis of water, soil
Option B:	Na / K concentration in body fluids
Option C:	To determine $\mathrm{Mg} / \mathrm{Ca}$ in cement
Option D:	Detection of Glucose
11.	The feedstock used for greener route synthesis of Adipic acid
Option A:	Aniline
Option B:	Glucose
Option C:	Naphthol
Option D:	Iso-butyl benzene
12.	In impressed current cathodic protection, anode is provided with a gypsum backfill because
Option A:	It enhances the rate of reaction
Option B:	It decreases metal to metal contact
Option C:	It enhances electrical contact with surrounding soil
Option D:	It decreases electrical contact with soil
13.	Arrange n-heptane, Iso-octane, Naphthalene in increasing order of their knocking tendency in Petrol IC engine.
Option A:	Naphthalene $<$ Iso-octane $<$ n-heptane
Option B:	Iso-octane $<$ n-heptane $<$ Naphthalene
Option C:	n-heptane $<$ Naphthalene $<$ Iso-octane
Option D:	Naphthalene $<$ n-heptane $<$ Iso-octane
14.	As per Pilling- Bedworth rule, Greater the specific volume ratio,
Option A:	Higher is the oxidation corrosion
Option B:	Higher is the reduction corrosion
Option C:	Lower is the oxidation corrosion

Option D:	Lower is the reduction corrosion	
15.	Calculate Gross calorific value of coal sample containing $\mathrm{C}=83 \%, \mathrm{H}=6 \%$, $\mathrm{O}=3 \%, \mathrm{~S}=3.7 \%, \mathrm{~N}=2.5 \%$, ash $=1.8 \%$	
Option A:	$8629.90 \mathrm{Kcal} / \mathrm{Kg}$	
Option B:	$8610.2 \mathrm{Kcal} / \mathrm{Kg}$	
Option C:	$8729.90 \mathrm{Kcal} / \mathrm{Kg}$	
Option D:	$8523.50 \mathrm{Kcal} / \mathrm{Kg}$	
Q2.		
Q2A	Solve any Two 5Meach	
i.	With the help of Jablonski diagram, describe Fluorescence, Phosphorescence and explain why Triplet states are more stable than Singlet state.	
ii.	Write the Nernst Equation and calculate Emf of the following cell at 298K: $M g_{(s)} / M g^{2+}(0.001 M) \\| C u^{2+}(0.0001 M) / C u_{(s)} .$ Given: $E_{C u 2+/ C u}^{0}=0.34 \mathrm{~V}$ and $E_{M g 2+/ \mathrm{Mg}}^{0}=-2.37 \mathrm{~V}$	
iii.	Highlight the green chemistry principle involved in the synthesis of Carbaryl and Write the greener route reaction for the synthesis of Carbaryl.	
Q2B	Solve any One 5 M	
1.	What is Differential Aeration corrosion? Explain why a "pure Zinc metal rod half immersed vertically in saline water starts corroding at the bottom" with neat diagram, reactions \& corrosion product formation.	
ii.	A sample of coal was found to contain $C=80 \%, H=5 \%, O=1 \%, N=2 \%$, Ash $=12 \%$. Calculate the minimum amount of air required for complete combustion of 1 kg of coal sample.	
Q3		
Q3A	Solve any Two 5 M each	
1	Draw the energy level diagram showing various molecular energies and explain why molecular spectra contains broad bands whereas atomic spectra consist of sharp lines.	
ii	A cell uses $\mathrm{Zn}^{2+} / \mathrm{Zn}$ and $\mathrm{Ag}^{+} / \mathrm{Ag}$ electrodes. Write the cell representation, Half-cell reactions, Net cell reactions and calculate the standard Emf of the cell. Given: $\quad E_{Z n 2+/ Z n}^{0}=-0.76 \mathrm{~V}$ and $E_{A g+/ A g}^{0}=0.8 \mathrm{~V}$	
iii	Define Green chemistry. As per Green chemistry Principles, why is it essential to design energy efficient process. Explain with suitable examples.	
Q3B	Solve any One 5M	
i	What is oxidation corrosion. Name the different types of oxide layer formed and state which oxide layers are non-protective in nature. Explain with suitable examples.	
ii	Determine C, H, N elements as \% from the following observations in experiments of analysis of coal. 0.25 g coal on burning in a combustion tube and passing the gases through tubes containing anhydrous CaCl_{2} and KOH increases their weight by 0.09 g and 0.8 g respectively. In Kjeldahl's method, ammonia evolved by 0.42 g coal was absorbed in 49.5 ml of 0.12 N HCl solution. After absorption, the excess acid required 36.5 ml of 0.12 N NaOH for neutralization.	

University of Mumbai

Examination 2020 under cluster 3 (Lead College: FCRIT)

Program: FE
Curriculum Scheme: Rev2019
Examination: FE Semester II

Course Code: FEC203
Time: $\mathbf{1} \frac{1}{2}$ hour

Course Name: Engineering Chemistry II
Max. Marks: 60

Question Number	Correct Option (Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	B
Q2.	D
Q3.	C
Q4	C
Q5	D
Q6	C
Q7	A
Q8.	D
Q9.	B
Q10.	D
Q11.	B
Q12.	C
Q13.	A
Q14.	C
Q15.	C

