University of Mumbai Examination 2020 under cluster 3 (Lead College: FCRIT)

Program: FE Curriculum Scheme: Rev2019 Examination: FE Semester II Course Name: Engineering chemistry II

Course Code: FEC203 Time: $1\frac{1}{2}$ hour 60

Max. Marks:

Q1.	Choose the correct option for following questions. All the Questions are		
	2 M each		
1.	Selection rule to produce rotational spectra is		
Option A:	Dipole moment of molecule must change during vibrations		
Option B:	Molecule must have permanent dipole moment		
Option C:	Presence of chromophore in a molecule		
Option D:	Presence of unpaired electron in a molecule		
•			
2.	Benzene is an important industrial solvent which is classified as		
Option A:	Non-toxic		
Option B:	Non-flammable		
Option C:	Biodegradable		
Option D:	Carcinogenic		
3.	Which of the following statement is incorrect about an electrochemical cell		
Option A:	Oxidation occurs at anode and reduction at cathode		
Option B:	Chemical energy is converted into electrical energy		
Option C:	Cell can work indefinitely		
Option D:	Salt bridge maintains electrical neutrality of the electrolytes		
4.	If a metal rod exhibits holes on its surface, the type of corrosion is		
Option A:	Waterline		
Option B:	Galvanic		
Option C:	Pitting		
Option D:	Stress		
5.	A good fuel has		
Option A:	Low ignition temperature and high calorific value		
Option B:	Low ignition temperature and low calorific value		
Option C:	High ignition temperature and high calorific value		
Option D:	Moderate ignition temperature and high calorific value		
6.	Spin multiplicity for the two unpaired electrons in excited singlet state is		
Option A:			
Option B:	2		
Option C:			

Option D:	4		
7.	Cell reaction will be spontaneous if its Emf is		
Option A:	Positive		
Option B:	Negative		
Option C:	Zero		
Option D:	D: Fixed		
-			
8.	Proximate analysis of coal is used to determine		
Option A:	% of Nitrogen		
Option B:	% of Sulphur		
Option C:	% of Hydrogen		
Option D:	% of Moisture		
9.	Season cracking and Caustic embrittlement are special case of		
Option A:	Chemical corrosion		
Option B:	Stress corrosion		
Option C:	Concentration cell corrosion		
Option D:	Waterline corrosion		
10.	Which is not an application of Flame Photometry		
Option A:	Analysis of water, soil		
Option B:	Na/K concentration in body fluids		
Option C:	To determine Mg/Ca in cement		
Option D:	Detection of Glucose		
11.	The feedstock used for greener route synthesis of Adipic acid		
Option A:	Aniline		
Option B:	Glucose		
Option C:	Naphthol		
Option D:	Iso-butyl benzene		
12.	In impressed current cathodic protection, anode is provided with a gypsum		
	backfill because		
Option A:	It enhances the rate of reaction		
Option B:	It decreases metal to metal contact		
Option C:	It enhances electrical contact with surrounding soil		
Option D:	It decreases electrical contact with soil		
12			
13.	Arrange n-neptane, Iso-octane, Naphthalene in increasing order of their knocking		
Ontion A:	Vendency in Petrol IC engine.		
Option R:	Naphthalene < Iso-octane < n-neptane		
Option C:	n hontono < Naphthalono < Iso ostono		
Option D:	Nanhthalana < n hantana < Iso aatana		
1.4	As per Pilling Redworth rule. Greater the specific volume ratio		
Option A:	Higher is the oxidation corresion		
Option D:	Higher is the reduction corresion		
Ontion C.	I I OWER IS THE OVIDATION CORROSION		

Option D:	Lower is the reduction corrosion
15	Calculate Gross calcrific value of each sample containing $C = \frac{920}{4}$ H = 6%
13.	O=3%, $S = 3.7%$, $N = 2.5%$, $ash = 1.8%$
Option A:	8629.90 Kcal/Kg
Option B:	8610.2 Kcal/Kg
Option C:	8729.90 Kcal/Kg
Option D:	8523.50 Kcal/Kg
Q2.	
Q2A	Solve any Two 5 M each
i.	With the help of Jablonski diagram, describe Fluorescence, Phosphorescence
	and explain why Triplet states are more stable than Singlet state.
ii.	Write the Nernst Equation and calculate Emf of the following cell at 298K:
	$Mg_{(s)}/Mg^{2+}(0.001M) Cu^{2+}(0.0001M)/Cu_{(s)}.$
	Given: $E^0 = 0.34 V$ and $E^0 = -2.37 V$
	$\frac{du + du}{du + du} = \frac{du + du}{du + du}$
111.	Write the greener route reaction for the synthesis of Carbaryl and
O2B	Solve any One 5 M
j Q2D	What is Differential Agration corrosion? Explain why a "mure Zinc metal rod
1.	half immersed vertically in saline water starts corroding at the bottom" with neat
	diagram reactions & corrosion product formation
ii.	A sample of coal was found to contain $C = 80\%$, $H = 5\%$, $O = 1\%$, $N = 2\%$.
	Ash=12%. Calculate the minimum amount of air required for complete
	combustion of 1kg of coal sample.
03	
Q3A	Solve any Two5 M each
i	Draw the energy level diagram showing various molecular energies and explain
	why molecular spectra contains broad bands whereas atomic spectra consist of
	sharp lines.
ii	A cell uses Zn^{2+}/Zn and Ag^{+}/Ag electrodes. Write the cell representation,
	Half-cell reactions, Net cell reactions and calculate the standard Emf of the cell.
	Given: $E_{7n^2+/7n}^0 = -0.76 V \text{ and } E_{4n^2+/4n}^0 = 0.8 V$
iii	Define Green chemistry. As per Green chemistry Principles, why is it essential to
	design energy efficient process. Explain with suitable examples.
Q3B	Solve any One 5M
i	What is oridation corrosion Name the different types of oride layer formed and
1	state which oxide layers are non-protective in nature Explain with suitable
	examples.
ii	Determine C. H. N elements as % from the following observations in experiments
	of analysis of coal.
1	0.23g coal on burning in a combustion tube and passing the gases through tubes
	0.25g coal on burning in a combustion tube and passing the gases through tubes containing anhydrous $CaCl_2$ and KOH increases their weight by 0.09 g and 0.8g
	0.25g coal on burning in a combustion tube and passing the gases through tubes containing anhydrous $CaCl_2$ and KOH increases their weight by 0.09 g and 0.8g respectively. In Kjeldahl's method, ammonia evolved by 0.42g coal was absorbed
	0.25g coal on burning in a combustion tube and passing the gases through tubes containing anhydrous $CaCl_2$ and KOH increases their weight by 0.09 g and 0.8g respectively. In Kjeldahl's method, ammonia evolved by 0.42g coal was absorbed in 49.5ml of 0.12 N HCl solution. After absorption, the excess acid required

University of Mumbai Examination 2020 under cluster 3 (Lead College: FCRIT)

Program: **FE** Curriculum Scheme: Rev2019 Examination: FE Semester II Course Name: Engineering Chemistry II

Course Code: FEC203 Time: $1\frac{1}{2}$ hour

Max. Marks: 60

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	B
Q2.	D
Q3.	С
Q4	С
Q5	D
Q6	С
Q7	А
Q8.	D
Q9.	В
Q10.	D
Q11.	В
Q12.	С
Q13.	А
Q14.	С
Q15.	С