### K. J. Somaiya Institute of Engineering and Information Technology

Sion, Mumbai - 400022

#### NAAC Accredited Institute with 'A' Grade

**NBA Accredited 3 Programs** 

(Computer Engineering, Electronics & Telecommunication Engineering and Electronics Engineering) Permanently
Affiliated to University of Mumbai

#### **EXAMINATION TIME TABLE (JANUARY 2021)**

# PROGRAMME - T.E. (Electronics & Telecommunication)(REV. -2016) (Choice Based) SEMESTER - V

| Days and Dates             | Time                 | Course Code | Paper                                      |
|----------------------------|----------------------|-------------|--------------------------------------------|
| Thursday, January 7, 2021  | 3.30 p.m to 5.30 p.m | ECC501      | Micropocessor & Peripherals Interfacing    |
| Saturday, January 9, 2021  | 3.30 p.m to 5.30 p.m | ECC502      | Digital Communication                      |
| Tuesday, January 12, 2021  | 3.30 p.m to 5.30 p.m | ECC503      | Electromagnetic Engineering                |
| Thursday, January 14, 2021 | 3.30 p.m to 5.30 p.m | ECC504      | Discrete Time Signal Processing            |
| Saturday, January 16, 2021 | 3.30 p.m to 5.30 p.m | ECCDLO 5011 | Elective I : Microelectronics              |
| Saturday, January 16, 2021 | 3.30 p.m to 5.30 p.m | ECCDLO 5012 | Elective I: TV & Video Engineering         |
| Saturday, January 16, 2021 | 3.30 p.m to 5.30 p.m | ECCDLO 5013 | Elective I : Finite Automata Theory        |
| Saturday, January 16, 2021 | 3.30 p.m to 5.30 p.m | ECCDLO 5014 | Elective I : Data Compression & Encryption |

Important Note: • Change if any, in the time table shall be communicated on the college web site.

Mumbai PRINCIPAI 20th December, 2020

Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Rev-2016 Examination: TE Semester V

Course Code: ECC501 and Course Name: Microprocessor and Peripherals Interfacing

Time: 2 hour Max. Marks: 80

| Q1.       | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|           | The state of the s |  |  |  |  |
| 1.        | Compared to High level language, Assembly Language requires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Option A: | More memory and more execution time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Option B: | More memory and less execution time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Option C: | Less memory and less execution time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Option D: | Same memory and same execution time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 2.        | A microprocessor consists of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Option A: | ALU, Register array and Control Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Option B: | Program memory, I/O Ports and Timers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Option C: | Data memory, I/O Ports and Timers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Option D: | ALU, Register array and UART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 3.        | For an 8086 microprocessor, will be the value of physical address if the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|           | given segment address is 6300H and offset address is 0200H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Option A: | 06500H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Option B: | 62300H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Option C: | 63200H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Option D: | 08300H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 4.        | Which of the following refer stack memory for its execution?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Option A: | CALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Option B: | MACRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Option C: | ENDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Option D: | JMP address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 5.        | What is the functionality of TF bit of 8086's flag register?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Option A: | Enable single step mode for on-chip debugging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Option B: | Increment source and destination pointer during string operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Option C: | Enable maskable interrupts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Option D: | Enable maximum mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 6.        | While performing MOVSW instructions over Strings, the data is transferred to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Option A: | ES:DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Option B: | DS:SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Option C: | CS:IP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Option D: | SS:SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 7.        | DIV CL instruction of 8086 microprocessor,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |

| Option A: | Store quotient of division operation in AX and remainder in DX                        |
|-----------|---------------------------------------------------------------------------------------|
| Option B: | Store quotient of division operation in AL and remainder in AH                        |
| Option C: | Store quotient of division operation in AH and remainder in AL                        |
| Option D: | Store quotient of division operation in DX and remainder in AX                        |
|           |                                                                                       |
| 8.        | MOV AL, [BX] instruction of 8086,                                                     |
| Option A: | Copy data from BX register to AL register                                             |
| Option B: | Copy data from BL register to AL register                                             |
| Option C: | Copy data from data segment location pointed by BX, to AL register                    |
| Option D: | Copy data from AL register to data segment location pointed by BX                     |
|           |                                                                                       |
| 9.        | The instruction that pushes the flag register on to the stack is                      |
| Option A: | PUSH                                                                                  |
| Option B: | POP                                                                                   |
| Option C: | PUSHF                                                                                 |
| Option D: | POPF                                                                                  |
|           |                                                                                       |
| 10.       | How many maximum numbers of slaves can be connected in cascading of IC 8259?          |
| Option A: | 2                                                                                     |
| Option B: | 4                                                                                     |
| Option C: | 8                                                                                     |
| Option D: | 16                                                                                    |
|           |                                                                                       |
| 11.       | BSR mode of 8255 is used to                                                           |
| Option A: | Select mode of Port-A                                                                 |
| Option B: | Set or Reset any one bit of Port-C                                                    |
| Option C: | Select IO mode of port-B                                                              |
| Option D: | Set or Reset a bit of Port-A                                                          |
|           |                                                                                       |
| 12.       | How many bits are provided for Count Value In counter register of IC 8257?            |
| Option A: | 16                                                                                    |
| Option B: | 32                                                                                    |
| Option C: | 14                                                                                    |
| Option D: | 20                                                                                    |
|           |                                                                                       |
| 13.       | In square wave generator mode of 8254, Count (N) is loaded in the counter register.   |
|           | What is the frequency of the output signal?                                           |
| Option A: | N divided by clock frequency                                                          |
| Option B: | Clock frequency divided by N                                                          |
| Option C: | 65536 – N                                                                             |
| Option D: | 2 <sup>N</sup>                                                                        |
|           |                                                                                       |
| 14.       | For 8 bits of ADC, V <sub>REF</sub> = 5V. If Analog voltage in 3 V, Calculate decimal |
|           | equivalent of output signal.                                                          |
| Option A: | 255                                                                                   |
| Option B: | 180                                                                                   |
| Option C: | 127                                                                                   |
| Option D: | 153                                                                                   |
| -         |                                                                                       |
| 15.       | In ADC0809, ALE pin is used to                                                        |
|           |                                                                                       |

| Option A: | Latch analog voltage of channel.                                                  |
|-----------|-----------------------------------------------------------------------------------|
| Option B: | Latch selected channel.                                                           |
| Option C: | Latch clock of the ADC                                                            |
| Option D: | Latch output of the ADC                                                           |
|           |                                                                                   |
| 16.       | Signal conditioners of the Data Acquisition system perform functionality like     |
| Option A: | Conversion of physical quantity to electrical signal                              |
| Option B: | Amplification and Selection of desired portion of signal                          |
| Option C: | Recording input data permanently                                                  |
| Option D: | Displaying all the recorded data                                                  |
|           |                                                                                   |
| 17.       | Which of the following chips is needed to read 8 bits data from general purpose   |
|           | digital Input devices?                                                            |
| Option A: | 8087                                                                              |
| Option B: | 8254                                                                              |
| Option C: | 8255                                                                              |
| Option D: | DAC0808                                                                           |
|           |                                                                                   |
| 18.       | How many address lines a memory chip of 2K capacity will have?                    |
| Option A: | 10                                                                                |
| Option B: | 8                                                                                 |
| Option C: | 11                                                                                |
| Option D: | 12                                                                                |
|           |                                                                                   |
| 19.       | What is the size of data registers in 8087?                                       |
| Option A: | 8 bits                                                                            |
| Option B: | 16 bits                                                                           |
| Option C: | 20 bits                                                                           |
| Option D: | 80 bits                                                                           |
|           |                                                                                   |
| 20.       | Which of the following data lines are used by 8086 to read /write a byte from ODD |
|           | address memory locations?                                                         |
| Option A: | AD0-AD7                                                                           |
| Option B: | AD8-AD15                                                                          |
| Option C: | AD0- AD15                                                                         |
| Option D: | AD0-AD11                                                                          |

| Q2   |                                                                               |
|------|-------------------------------------------------------------------------------|
| A    | Solve any Two 5 marks each                                                    |
| i.   | Explain the need of the compiler and assembler and their comparison.          |
| ii.  | Write a program to display a message "Microprocessor" on IBM PC. Use          |
|      | INT 21h function, AH=09 with string of message at DS:DX and terminated        |
|      | by "\$".                                                                      |
| iii. | Explain BSR mode of PPI-8255.                                                 |
|      |                                                                               |
| В    | Solve any One 10 marks each                                                   |
| i.   | If analog voltage of 3.2V is connected to the IN3 channel of ADC 0809.        |
|      | Suggest hardware and write a program to convert analog voltage to its digital |
|      | equivalent and store the value in the AL register. $(V_{REF} = 5V)$           |
| ii.  | Explain Maximum Mode of 8086 microprocessor. Draw the timing                  |
|      | diagram for read operation in maximum mode.                                   |

| Q3.  |                                                                        |
|------|------------------------------------------------------------------------|
| A    | Solve any Two 5 marks each                                             |
| i.   | Describe the importance of 8257 DMA controller.                        |
| ii.  | Draw and Explain the Flag register of 8086?                            |
| iii. | Explain salient features of Programmable Interval Timer 8254.          |
| В    | Solve any One 10 marks each                                            |
| i.   | Design an 8086 based system with 32K RAM (4 chips of 8K). Draw the     |
|      | memory map of the system designed.                                     |
| ii.  | Write an assembly language program to find the smallest number from an |
|      | array of 10 numbers. Assume that all numbers are 8 bit wide.           |

### **Examination 2020 under cluster 5 (Lead College: APSIT)**

Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Rev-2016 Examination: TE Semester V

Course Code: ECC501 and Course Name: Microprocessor and Peripherals Interfacing

Time: 2 hour Max. Marks: 80

\_\_\_\_\_

| Question<br>Number | Correct Option (Enter either 'A' or 'B' or 'C' or 'D') |
|--------------------|--------------------------------------------------------|
| Q1.                | С                                                      |
| Q2.                | A                                                      |
| Q3.                | С                                                      |
| Q4                 | A                                                      |
| Q5                 | A                                                      |
| Q6                 | A                                                      |
| Q7                 | В                                                      |
| Q8.                | С                                                      |
| Q9.                | С                                                      |
| Q10.               | С                                                      |
| Q11.               | В                                                      |
| Q12.               | С                                                      |
| Q13.               | В                                                      |
| Q14.               | D                                                      |
| Q15.               | В                                                      |
| Q16.               | В                                                      |
| Q17.               | С                                                      |
| Q18.               | С                                                      |
| Q19.               | D                                                      |
| Q20.               | В                                                      |

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev2016 Examination: Third Year Semester V

Course Code: ECC502 and Course Name: Digital Communication
Time: 1 hour

Max. Marks: 80

\_\_\_\_\_

| Q1.       | Choose the correct option for following questions. All the Questions are                                              |
|-----------|-----------------------------------------------------------------------------------------------------------------------|
|           | compulsory and carry equal marks 40                                                                                   |
| 1.        | The total area under the PDF curve is                                                                                 |
| Option A: | 0                                                                                                                     |
| Option B: | Unity                                                                                                                 |
| Option C: | Infinite                                                                                                              |
| Option D: | $2\pi$                                                                                                                |
|           |                                                                                                                       |
| 2.        | A random process is called as wide sense stationary if                                                                |
| Option A: | Its mean varies with shift in time origin                                                                             |
| Option B: | Its mean does not vary with shift in time origin                                                                      |
| Option C: | Its mean and autocorrelation vary with shift in time                                                                  |
| Option D: | Its mean and autocorrelation do not vary with shift in time                                                           |
|           |                                                                                                                       |
| 3.        | Gaussian distribution is also known as                                                                                |
| Option A: | Uniform distribution                                                                                                  |
| Option B: | Normal distribution                                                                                                   |
| Option C: | Cauchy distribution                                                                                                   |
| Option D: | Rayleigh distribution                                                                                                 |
|           |                                                                                                                       |
| 4.        | The total information per message sequence is known as                                                                |
| Option A: | Self-information                                                                                                      |
| Option B: | Entropy                                                                                                               |
| Option C: | Mutual information                                                                                                    |
| Option D: | Information rate                                                                                                      |
|           |                                                                                                                       |
| 5.        | The source has entropy of 1.75 bits/ message and generates 40,000 messages per                                        |
|           | second its information rate is given as,                                                                              |
| Option A: | R=50 Kbps                                                                                                             |
| Option B: | R=80 Kbps                                                                                                             |
| Option C: | R=70 Kbps                                                                                                             |
| Option D: | R=10 Kbps                                                                                                             |
|           |                                                                                                                       |
| 6.        | The channel capacity of extremely noisy channel is                                                                    |
| Option A: | High                                                                                                                  |
| Option B: | Infinite                                                                                                              |
| Option C: | Zero                                                                                                                  |
| Option D: | Medium                                                                                                                |
| •         |                                                                                                                       |
| 7.        | In a linear code, the minimum Hamming distance between any two code words isminimum weight of any non-zero code word. |

| Option B: Greater than Option C: Equal to Option D: Not related to  8. The no of errors detected s and no. of errors corrected t for dmin=3 Option A: s=2, t=1 Option D: s=3, t=1  9. The following code requires memory for encoding Option A: Hamming code Option B: Cyclic code Option B: Chrode Option D: Convolutional code  10. A cyclic code can be generated using Option B: Tree diagram Option B: Tree diagram Option C: Trellis diagram Option C: Trellis diagram Option C: Optio | Option A: | Less than                                                                           |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------|--|--|--|--|
| Option C: Equal to Option D: Not related to  8. The no of errors detected s and no. of errors corrected t for dmin=3 Option A: s=2, t=1 Option B: s=2, t=2 Option C: s=1, t=1 Option D: s=3, t=1  9. The following code requires memory for encoding Option A: Hamming code Option B: Cyclic code Option C: BCH code Option D: Convolutional code  10. A cyclic code can be generated using Option A: Generator polynomial Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option B: Hamming code Option B: A-H code Option C: R-H code Option C: Convolutional code  12. Which of the following has better noise performance Option A: OpSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option C: PSK system Option C: Debron C: PSK system Option C: Debron C: PSK system Option C: Debron C: PSK system Option C: Ocherent FSK system Option C: Ocherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                                                                     |  |  |  |  |
| Option D: Not related to  8. The no of errors detected s and no. of errors corrected t for dmin=3 Option A: \$=2, t=1 Option B: \$=2, t=2 Option C: \$=1, t=1 Option D: \$=3, t=1  9. The following code requires memory for encoding Option A: Hamming code Option A: Ocyclic code Option D: Convolutional code  10. A cyclic code can be generated using Option A: Generator polynomial Option B: Tree diagram Option D: Corefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option A: Cyclic codes Option D: Corefficient matrix  11. The term surviving path is applicable to Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: OPSK Option B: 8-PSK Option C: 16-PSK Option C: 16-PSK Option D: G4-PSK  Option A: Non coherent FSK system Option A: Non coherent FSK system Option C: PSK system Option C: PSK system Option C: PSK system Option C: Ocherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                                                                                     |  |  |  |  |
| S. The no of errors detected s and no. of errors corrected t for dmin=3  Option A: s=2, t=1  Option C: s=1, t=1  Option D: s=3, t=1  9. The following code requires memory for encoding  Option A: Hamming code  Option B: Cyclic code  Option C: BCH code  Option D: Convolutional code  10. A cyclic code can be generated using  Option A: Generator polynomial  Option A: Tree diagram  Option C: Trellis diagram  Option D: Coefficient matrix  11. The term surviving path is applicable to  Option A: Cyclic codes  Option B: Hamming code  Option A: Cyclic codes  Option B: Hamming code  Option B: Hamming code  Option C: R-H code  Option D: Convolutional code  12. Which of the following has better noise performance  Option C: I6-PSK  Option C: I6-PSK  Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is  Option C: PSK system  Option C: PSK system  Option D: Coherent FSK system  Option D: Coherent FSK system  Option C: PSK system  Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                     |  |  |  |  |
| Option A: s=2, t=1 Option B: s=2, t=2 Option C: s=1, t=1 Option D: s=3, t=1  9. The following code requires memory for encoding Option A: Hamming code Option B: Cyclic code Option B: Cyclic code Option D: Convolutional code  10. A cyclic code can be generated using Option A: Generator polynomial Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option A: Cyclic codes Option D: Convolutional code  12. Which of the following has better noise performance Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option D: G4-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option B: Coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system  Option D: Coherent ASK system  Option D: Coherent ASK system  Option D: Coherent ASK system  Option D: Coherent ASK system  Option D: Coherent ASK system  Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Option D. | 1 Not related to                                                                    |  |  |  |  |
| Option A: s=2, t=1 Option B: s=2, t=2 Option C: s=1, t=1 Option D: s=3, t=1  9. The following code requires memory for encoding Option A: Hamming code Option B: Cyclic code Option B: Cyclic code Option D: Convolutional code  10. A cyclic code can be generated using Option A: Generator polynomial Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option A: Cyclic codes Option D: Convolutional code  12. Which of the following has better noise performance Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option D: G4-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option B: Coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system  Option D: Coherent ASK system  Option D: Coherent ASK system  Option D: Coherent ASK system  Option D: Coherent ASK system  Option D: Coherent ASK system  Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q         | The no of errors detected s and no of errors corrected t for dmin=2                 |  |  |  |  |
| Option B: s=2, t=2 Option C: s=1, t=1 Option D: s=3, t=1  9. The following code requires memory for encoding Option A: Hamming code Option B: Cyclic code Option D: Convolutional code  10. A cyclic code can be generated using Option A: Generator polynomial Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option C: 16-PSK Option C: 16-PSK Option C: Non ocherent FSK system Option A: Non coherent FSK system Option C: PSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                                                                     |  |  |  |  |
| Option C: s=1, t=1 Option D: s=3, t=1  9. The following code requires memory for encoding Option A: Hamming code Option B: Cyclic code Option D: Convolutional code  10. A cyclic code can be generated using Option A: Generator polynomial Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: OPSK Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option B: Coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system  Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | '                                                                                   |  |  |  |  |
| Option D: s=3, t=1  9. The following code requires memory for encoding Option A: Hamming code Option B: Cyclic code Option C: BCH code Option D: Convolutional code  10. A cyclic code can be generated using Option A: Generator polynomial Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: OPSK Option B: 8-PSK Option B: 8-PSK Option D: 64-PSK  Option D: 64-PSK  Option D: For a specified average transmitted power, the system that gives lowest probability of error among the following is_ Option B: Coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system  Option D: Coherent ASK system Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                                                                     |  |  |  |  |
| 9. The following code requires memory for encoding Option A: Hamming code Option B: Cyclic code Option D: Convolutional code  10. A cyclic code can be generated using Option A: Generator polynomial Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: OPSK Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | '                                                                                   |  |  |  |  |
| Option A: Hamming code Option B: Cyclic code Option C: BCH code Option D: Convolutional code  10. A cyclic code can be generated using Option A: Generator polynomial Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option C: 16-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option B: Coherent FSK system Option C: PSK system Option C: Deferent ASK system Option D: Coherent ASK system Option D: Coherent ASK system Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Option D. | 5-3, t-1                                                                            |  |  |  |  |
| Option A: Hamming code Option B: Cyclic code Option C: BCH code Option D: Convolutional code  10. A cyclic code can be generated using Option A: Generator polynomial Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option C: 16-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option B: Coherent FSK system Option C: PSK system Option C: Deferent ASK system Option D: Coherent ASK system Option D: Coherent ASK system Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         | The following code requires memory for encoding                                     |  |  |  |  |
| Option B: Cyclic code Option C: BCH code Option D: Convolutional code  10. A cyclic code can be generated using Option A: Generator polynomial Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option C: 16-PSK Option D: Convolutional code  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option C: PSK system Option C: Coherent FSK system Option D: Coherent ASK system Option D: Coherent ASK system Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | · · · · · ·                                                                         |  |  |  |  |
| Option C: BCH code Option D: Convolutional code  10. A cyclic code can be generated using Option A: Generator polynomial Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: OpSK Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option B: Coherent FSK system Option B: Coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                                                                     |  |  |  |  |
| Option D: Convolutional code  10. A cyclic code can be generated using Option A: Generator polynomial Option B: Tree diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: OPSK Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option C: PSK system Option C: PSK system Option C: Dehernt ASK system Option D: Coherent ASK system Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | ·                                                                                   |  |  |  |  |
| 10. A cyclic code can be generated using Option A: Generator polynomial Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                     |  |  |  |  |
| Option A: Generator polynomial Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system  Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Орион D:  | Convolutional code                                                                  |  |  |  |  |
| Option A: Generator polynomial Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system  Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10        | A cyclic code can be generated using                                                |  |  |  |  |
| Option B: Tree diagram Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                                                                                     |  |  |  |  |
| Option C: Trellis diagram Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system  Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 1 7                                                                                 |  |  |  |  |
| Option D: Coefficient matrix  11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                     |  |  |  |  |
| 11. The term surviving path is applicable to Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system  Option D: Coherent ASK system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                                                                     |  |  |  |  |
| Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option C: 16-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Option D. | Coefficient maura                                                                   |  |  |  |  |
| Option A: Cyclic codes Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option C: 16-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.       | The term surviving path is applicable to                                            |  |  |  |  |
| Option B: Hamming code Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | <u> </u>                                                                            |  |  |  |  |
| Option C: R-H code Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                                                                     |  |  |  |  |
| Option D: Convolutional code  12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                     |  |  |  |  |
| 12. Which of the following has better noise performance Option A: QPSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                     |  |  |  |  |
| Option A: QPSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | opnon 2.  |                                                                                     |  |  |  |  |
| Option A: QPSK Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.       | Which of the following has better noise performance                                 |  |  |  |  |
| Option B: 8-PSK Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Option A: |                                                                                     |  |  |  |  |
| Option C: 16-PSK Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | 8-PSK                                                                               |  |  |  |  |
| Option D: 64-PSK  13. For a specified average transmitted power, the system that gives lowest probability of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 16-PSK                                                                              |  |  |  |  |
| 13. For a specified average transmitted power, the system that gives lowest probability of error among the following is  Option A: Non coherent FSK system  Option B: Coherent FSK system  Option C: PSK system  Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 64-PSK                                                                              |  |  |  |  |
| of error among the following is Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •         |                                                                                     |  |  |  |  |
| Option A: Non coherent FSK system  Option B: Coherent FSK system  Option C: PSK system  Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.       | For a specified average transmitted power, the system that gives lowest probability |  |  |  |  |
| Option A: Non coherent FSK system Option B: Coherent FSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                     |  |  |  |  |
| Option B: Coherent FSK system Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Option A: |                                                                                     |  |  |  |  |
| Option C: PSK system Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                     |  |  |  |  |
| Option D: Coherent ASK system  14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _         |                                                                                     |  |  |  |  |
| 14. Bandwidth required for QPSK is & BPSK is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                     |  |  |  |  |
| 1 \ 1 \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·         |                                                                                     |  |  |  |  |
| Option A:   ft. 2ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | Bandwidth required for QPSK is & BPSK is respectively                               |  |  |  |  |
| Option 7. 10, 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Option A: | $f_b$ , $2f_b$                                                                      |  |  |  |  |
| Option B: $2f_b$ , $f_b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | $2f_b, f_b$                                                                         |  |  |  |  |
| Option C: $f_b, f_b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Option C: | $\int f_b, f_b$                                                                     |  |  |  |  |
| Option D: $2f_b$ , $2f_b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Option D: | 2f <sub>b</sub> , 2f <sub>b</sub>                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                     |  |  |  |  |

| 1.5       |                                                                               |
|-----------|-------------------------------------------------------------------------------|
| 15.       | The modulation format in which amplitude and phase is varied is               |
| Option A: | QPSK                                                                          |
| Option B: | QAM                                                                           |
| Option C: | MPSK                                                                          |
| Option D: | BPSK                                                                          |
|           |                                                                               |
| 16.       | The criterion used for pulse shaping to avoid ISI is                          |
| Option A: | Nyquist criterion                                                             |
| Option B: | Quantization                                                                  |
| Option C: | Sample and hold                                                               |
| Option D: | PLL                                                                           |
|           |                                                                               |
| 17.       | Zero forcing equalizers are used for                                          |
| Option A: | Reducing ISI to zero                                                          |
| Option B: | Sampling                                                                      |
| Option C: | Quantization                                                                  |
| Option D: | Modulation                                                                    |
| •         |                                                                               |
| 18.       | The extent of eye opening in the vertical direction indicates                 |
| Option A: | ISI                                                                           |
| Option B: | Timing sensitivity                                                            |
| Option C: | Zero crossing jitter                                                          |
| Option D: | Noise Margin                                                                  |
| 1         |                                                                               |
| 19.       | The process of obtaining the transmitted bit sequence from received signal is |
|           | known as                                                                      |
| Option A: | Channel decoding                                                              |
| Option B: | Source decoding                                                               |
| Option C: | Demodulation                                                                  |
| Option D: | Baseband detection                                                            |
| •         |                                                                               |
| 20.       | If input noise is white then probability of error in matched filter is        |
| Option A: | Minimum                                                                       |
| Option B: | Maximum                                                                       |
| Option C: | Zero                                                                          |
| Option D: | Infinity                                                                      |
| - F :     |                                                                               |
|           | ı                                                                             |

| Q2 | Solve any Two                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 m                                               | arks each                                            |                                                       |                                           |                                         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|-----------------------------------------|
| A  | Explain the following terms and give their significance (i) Mean (ii) Central moment (iii) Variance (iv) Standard deviation                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |                                                      |                                                       |                                           |                                         |
| В  | ave<br>ii) Ver                                                                                                                                                                           | s shown:  M <sub>1</sub> 0.3  ermine the tage code if the average with the average code is the same and the same are t | M <sub>2</sub> 0.25 he Minimoword lengtherage code | M <sub>3</sub> 0.15 um Varian th and hence word leng | M <sub>4</sub> 0.12 nce Huffn ce find Ent th using Sl | M <sub>5</sub> 0.08 nan codeveropy of the | M <sub>6</sub> 0.10 words and e system. |
| С  | Compare and comment on the results of both.  Discuss the problem of inter symbol interference (ISI). Explain the measures to be taken to reduce ISI. How to study ISI using eye pattern? |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |                                                      |                                                       |                                           |                                         |

| Q3                                                                      | Solve any Two Questions out of Three 10 marks each                                                                                      | h  |  |  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
|                                                                         | A parity check matrix of a $(7,4)$ Hamming code is given as follows:<br>$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1$ | ,f |  |  |
| A                                                                       | i) Find Generator matrix using which find out the codewords of 1100 and 0101                                                            | )1 |  |  |
|                                                                         | ii) Determine the error correcting and detecting capability of system                                                                   | n  |  |  |
|                                                                         | Draw the encoder for the above block code.                                                                                              |    |  |  |
| B Draw the signal space diagram for 16-PSK and 16-QAM and find their e  |                                                                                                                                         |    |  |  |
| В                                                                       | probability. Also draw their PSD and determine bandwidth                                                                                |    |  |  |
| Justify that the probability of error in a matched filter does not depe |                                                                                                                                         |    |  |  |
|                                                                         | shape of the input signal. Derive relevant expression.                                                                                  |    |  |  |

# **University of Mumbai Examination 2020-2021**

#### Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev2016 Examination: Third Year Semester V

Course Code: ECC502 and Course Name: Digital Communication

Time: 2 hour Max. Marks: 80

| Question<br>Number | Correct Option<br>(Enter either 'A' or 'B'<br>or 'C' or 'D') |
|--------------------|--------------------------------------------------------------|
| Q1.                | В                                                            |
| Q2.                | D                                                            |
| Q3.                | В                                                            |
| Q4                 | В                                                            |
| Q5                 | С                                                            |
| Q6                 | С                                                            |
| Q7                 | С                                                            |
| Q8.                | A                                                            |
| Q9.                | В                                                            |
| Q10.               | A                                                            |
| Q11.               | D                                                            |
| Q12.               | A                                                            |
| Q13.               | С                                                            |
| Q14.               | A                                                            |
| Q15.               | В                                                            |
| Q16.               | A                                                            |
| Q17.               | A                                                            |
| Q18.               | D                                                            |
| Q19.               | D                                                            |
| Q20.               | A                                                            |

Program: BE <u>Electronics and Telecommunication</u> Engineering Curriculum Scheme: Revised 2016

Examination: Third Year Semester V

Course Code: <u>ECC503</u> and Course Name: <u>Electromagnetic Engineering</u>
Time: 2 hour

Max. Marks: 80

\_\_\_\_\_

For the students:- All the Questions are compulsory and carry equal marks.

| Q1.                 | The normal components of electric flux density are                            |
|---------------------|-------------------------------------------------------------------------------|
| Option A:           | continuous across a dielectric                                                |
| Option B:           | discontinuous across a dielectric boundary                                    |
| Option C:           | zero                                                                          |
| Option C:           | infinite                                                                      |
| Option D.           | inninte                                                                       |
| Q2.                 | Poynting vector is given by                                                   |
| Option A:           | E x H                                                                         |
| Option B:           | HxE                                                                           |
| Option C:           | E.H                                                                           |
| Option C. Option D: | (E.H)^2                                                                       |
| Option D.           | (E.H)*2                                                                       |
| Q3.                 | If the voltage applied across a capacitor is increased, the capacitance value |
| Option A:           | increases                                                                     |
| Option B:           | decreases                                                                     |
| Option C:           | remains constant                                                              |
| Option D:           | becomes infinity                                                              |
|                     |                                                                               |
| Q4.                 | Laplace's equation has                                                        |
| Option A:           | no solution                                                                   |
| Option B:           | only one solution                                                             |
| Option C:           | two solutions                                                                 |
| Option D:           | infinite solutions                                                            |
|                     |                                                                               |
| Q5.                 | An object which cannot contain an electrostatic field within it is known as   |
| Option A:           | a perfect dielectric                                                          |
| Option B:           | a perfect conductor                                                           |
| Option C:           | a perfect capacitor                                                           |
| Option D:           | a charge                                                                      |
|                     |                                                                               |
| Q6.                 | Point form of Gauss law is                                                    |
| Option A:           | Divergence of electric flux is equal to zero                                  |
| Option B:           | Divergence of electric flux density is equal to volume charge density         |
| Option C:           | Divergence of electric flux density is equal to zero                          |
| Option D:           | Divergence of electric flux is equal to volume charge density                 |
| 07                  | Intrinsic impedance of free space is                                          |
| Q7.                 | $77 \Omega$                                                                   |
| Option A: Option B: |                                                                               |
| -                   | 177 Ω                                                                         |
| Option C:           | 277 Ω                                                                         |

|                     | Examination 2020 under cluster 5 (Lead College AI 511)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Option D:           | 377 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Q8.                 | Which of the following is not a primary parameter of a transmission line?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Option A:           | Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Option B:           | Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Option C:           | Inductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Option D:           | Attenuation constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Q9.                 | In the absence of negative charge, the electric flux lines originating from positive charge will terminate at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Option A:           | infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Option B:           | positive charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Option C:           | negative charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Option D:           | both positive and negative charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Q10.                | The force experienced per unit positive charge at a point placed in the electric field is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Option A:           | Magnetic field intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Option B:           | Electric field intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Option C:           | Electric flux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Option C:           | Magnetic flux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Option D.           | Wagnetic flux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Q11.                | In a lossless medium the intrinsic impedance $\eta=60\pi$ and $\mu r=1$ . The relative dielectric constant $\epsilon r$ shall be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Option A:           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Option B:           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Option C:           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Option D:           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Q12.                | The capacitance of a material in air with area 20 m <sup>2</sup> and distance between plates being 5m is given as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Option A:           | 3.536pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Option B:           | 35.36pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Option C:           | 0.353pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Option D:           | 353.6pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| opnon D.            | - Constant of the Constant of |
| Q13.                | ∇.J=0 is known as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Option A:           | Laplace's Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Option B:           | Poisson's Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Option C:           | Continuity equation for steady current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option C. Option D: | Gauss Law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Option D.           | Gauss Law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Q14.                | As per Biot Savart's law, the differential magnetic field intensity produced at a point P due to differential current element is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Option A:           | Inversely proportional to distance R between point P and the element.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Option B:           | Directly proportional to distance R between point P and the element.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Option C:           | Inversely proportional to the square of distance R between point P and the element.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Q15. If the magnitude of the reflection coefficient on a transmission line for a given load is 1/3, VSWR is   Option A: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Option D:                     | Directly proportional to the square of distance R between point P and the element.                     |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------|---|
| Si 1/3, VSWR is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                                                                        |   |
| Option B: 2 Option C: 1 Option D: 8  Q16. For the wave equation E = 20sin (wt-6z)ax, the direction of wave propagation will be in Option A: X-direction Option B: Y-direction Option D: Z-direction Option D: XZ-direction Option A: Constant R and variable X circles Option A: Constant R and variable X circles Option B: Variable R and constant X circles Option D: Variable R and variable X circles Option D: Variable R and variable X circles  Option D: Variable R and variable X circles  Option D: Variable R and variable X circles  Option D: Variable R and variable X circles  Option D: Variable R and variable X circles  Option D: Variable R and variable X circles  Option D: Variable R and variable X circles  Option A: One Option D: dependent on magnetic movements inside the closed surface.  Option D: dependent on magnetic movements outside the closed surface.  Option D: A: 25 Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                    | Q15.                          |                                                                                                        |   |
| Option C:       1         Option D:       8         Q16.       For the wave equation E = 20sin (wt-6z)as, the direction of wave propagation will be in         Option A:       X-direction         Option B:       Y-direction         Q17.       The Smith chart consists of         Option A:       Constant R and variable X circles         Option B:       Variable R and constant X circles         Option D:       Variable R and variable X circles         Q18.       Magnetic flux density emerging out of a closed surface is         Option B:         Zero         Option C:         dependent on magnetic movements inside the closed surface.         Option D:         Q19.       An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m^2 is         Option B:         Option B:         Option D:         The direction of induced emf can be found by         Option A:         Canal dependent on induced emf can be found by         Option B:         Flemming's right hand rule <td colspa<="" td=""><td>Option A:</td><td>3</td></td>                                                                                | <td>Option A:</td> <td>3</td> | Option A:                                                                                              | 3 |
| Option D:       8         Q16.       For the wave equation E = 20sin (wt-6z)as, the direction of wave propagation will be in         Option A:       X-direction         Option D:       XZ-direction         Q17.       The Smith chart consists of         Option A:       Constant R and variable X circles         Option B:       Variable R and constant X circles         Option D:       Variable R and variable X circles         Q18.       Magnetic flux density emerging out of a closed surface is         Option A:       one         Option B:       zero         Option C:       dependent on magnetic movements inside the closed surface.         Option D:         Q19.       An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m <sup>2</sup> 2 is         Option A:       25         Option B:       50         Option B:       50         Option D:       100         The direction of induced emf can be found by         Option A:       Laplace's equation         Option B:       Flemming's right hand rule         Option C: <td>Option B:</td> <td>2</td>                                                    | Option B:                     | 2                                                                                                      |   |
| Q16. For the wave equation E = 20sin (wt-6z)a <sub>s</sub> , the direction of wave propagation will be in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Option C:                     | 1                                                                                                      |   |
| be in Option A: X-direction Option B: Y-direction Option C: Z-direction Option D: XZ-direction  Q17. The Smith chart consists of Option A: Constant R and variable X circles Option B: Variable R and constant X circles Option C: Constant R and variable X circles Option D: Variable R and constant X circles Option D: Variable R and variable X circles  Q18. Magnetic flux density emerging out of a closed surface is Option A: one Option B: zero Option C: dependent on magnetic movements inside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m^2 is Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                              | Option D:                     | 8                                                                                                      |   |
| be in Option A: X-direction Option B: Y-direction Option C: Z-direction Option D: XZ-direction  Q17. The Smith chart consists of Option A: Constant R and variable X circles Option B: Variable R and constant X circles Option C: Constant R and variable X circles Option D: Variable R and constant X circles Option D: Variable R and variable X circles  Q18. Magnetic flux density emerging out of a closed surface is Option A: one Option B: zero Option C: dependent on magnetic movements inside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m^2 is Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                              |                               |                                                                                                        |   |
| Option B:         Y-direction           Option C:         Z-direction           Option D:         XZ-direction           Q17.         The Smith chart consists of           Option A:         Constant R and variable X circles           Option B:         Variable R and constant X circles           Option C:         Constant R and constant X circles           Option D:         Variable R and variable X circles           Q18.         Magnetic flux density emerging out of a closed surface is           Option A:         one           Option B:         zero           Option C:         dependent on magnetic movements inside the closed surface.           Option D:         dependent on magnetic movements outside the closed surface.           Q19.         An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m^2 is           Option A:         25           Option B:         50           Option C:         75           Option D:         100           Q20.         The direction of induced emf can be found by           Option B:         Flemming's right hand rule           Option C:         Lenz's law | Q16.                          |                                                                                                        |   |
| Option C:       Z-direction         Option D:       XZ-direction         Q17.       The Smith chart consists of         Option A:       Constant R and variable X circles         Option B:       Variable R and constant X circles         Option D:       Variable R and variable X circles         Q18.       Magnetic flux density emerging out of a closed surface is         Option A:       one         Option B:       zero         Option C:       dependent on magnetic movements inside the closed surface.         Option D:       dependent on magnetic movements outside the closed surface.         Q19.       An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m^2 is         Option A:       25         Option B:       50         Option C:       75         Option D:       100         Q20.       The direction of induced emf can be found by         Option A:       Laplace's equation         Option C:       Lenz's law                                                                                                                                                                                         | Option A:                     | X-direction                                                                                            |   |
| Option D: XZ-direction  Q17. The Smith chart consists of Option A: Constant R and variable X circles Option B: Variable R and constant X circles Option C: Constant R and variable X circles Option D: Variable R and variable X circles  Q18. Magnetic flux density emerging out of a closed surface is Option A: one Option B: zero Option C: dependent on magnetic movements inside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m^2 is Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Option B:                     | Y-direction                                                                                            |   |
| Q17. The Smith chart consists of Option A: Constant R and variable X circles Option B: Variable R and constant X circles Option C: Constant R and constant X circles Option D: Variable R and variable X circles  Q18. Magnetic flux density emerging out of a closed surface is Option A: one Option B: zero Option C: dependent on magnetic movements inside the closed surface. Option D: dependent on magnetic movements outside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m <sup>2</sup> is Option A: 25 Option B: 50 Option C: 75 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                            |                               | Z-direction                                                                                            |   |
| Option A: Constant R and variable X circles Option B: Variable R and constant X circles Option C: Constant R and constant X circles Option D: Variable R and variable X circles  Option D: Variable R and variable X circles  Q18. Magnetic flux density emerging out of a closed surface is Option A: one Option B: zero Option C: dependent on magnetic movements inside the closed surface.  Option D: dependent on magnetic movements outside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m^2 is Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                       | Option D:                     | XZ-direction                                                                                           |   |
| Option A: Constant R and variable X circles Option B: Variable R and constant X circles Option C: Constant R and constant X circles Option D: Variable R and variable X circles  Option D: Variable R and variable X circles  Q18. Magnetic flux density emerging out of a closed surface is Option A: one Option B: zero Option C: dependent on magnetic movements inside the closed surface.  Option D: dependent on magnetic movements outside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m^2 is Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                       | -                             |                                                                                                        |   |
| Option B: Variable R and constant X circles Option C: Constant R and constant X circles Option D: Variable R and variable X circles  Q18. Magnetic flux density emerging out of a closed surface is Option A: one Option B: zero Option C: dependent on magnetic movements inside the closed surface. Option D: dependent on magnetic movements outside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m <sup>2</sup> is Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q17.                          | The Smith chart consists of                                                                            |   |
| Option B: Variable R and constant X circles Option C: Constant R and constant X circles Option D: Variable R and variable X circles  Q18. Magnetic flux density emerging out of a closed surface is Option A: one Option B: zero Option C: dependent on magnetic movements inside the closed surface. Option D: dependent on magnetic movements outside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m <sup>2</sup> is Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Option A:                     | Constant R and variable X circles                                                                      |   |
| Option D: Variable R and variable X circles  Q18. Magnetic flux density emerging out of a closed surface is Option A: one Option B: zero Option C: dependent on magnetic movements inside the closed surface. Option D: dependent on magnetic movements outside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m^2 is Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | Variable R and constant X circles                                                                      |   |
| Q18. Magnetic flux density emerging out of a closed surface is  Option A: one Option B: zero Option C: dependent on magnetic movements inside the closed surface.  Option D: dependent on magnetic movements outside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m^2 is Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Option C:                     | Constant R and constant X circles                                                                      |   |
| Option A: one Option B: zero Option C: dependent on magnetic movements inside the closed surface. Option D: dependent on magnetic movements outside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m^2 is Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Option D:                     | Variable R and variable X circles                                                                      |   |
| Option A: one Option B: zero Option C: dependent on magnetic movements inside the closed surface. Option D: dependent on magnetic movements outside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m^2 is Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                             |                                                                                                        |   |
| Option B: zero Option C: dependent on magnetic movements inside the closed surface. Option D: dependent on magnetic movements outside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m^2 is Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q18.                          | Magnetic flux density emerging out of a closed surface is                                              |   |
| Option C: dependent on magnetic movements inside the closed surface.  Option D: dependent on magnetic movements outside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m^2 is Option A: 25  Option B: 50  Option C: 75  Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation  Option B: Flemming's right hand rule  Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Option A:                     | one                                                                                                    |   |
| Option D: dependent on magnetic movements outside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m <sup>2</sup> is Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Option B:                     | zero                                                                                                   |   |
| Option D: dependent on magnetic movements outside the closed surface.  Q19. An infinite sheet has a charge density of 150 μC/m. The flux density in μC/m <sup>2</sup> is Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Option C:                     | dependent on magnetic movements inside the closed surface.                                             |   |
| Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | dependent on magnetic movements outside the closed surface.                                            |   |
| Option A: 25 Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                        |   |
| Option B: 50 Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q19.                          | An infinite sheet has a charge density of 150 $\mu$ C/m. The flux density in $\mu$ C/m <sup>2</sup> is |   |
| Option C: 75 Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Option A:                     | 25                                                                                                     |   |
| Option D: 100  Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Option B:                     | 50                                                                                                     |   |
| Q20. The direction of induced emf can be found by Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Option C:                     | 75                                                                                                     |   |
| Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Option D:                     | 100                                                                                                    |   |
| Option A: Laplace's equation Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                        |   |
| Option B: Flemming's right hand rule Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q20.                          | The direction of induced emf can be found by                                                           |   |
| Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Option A:                     |                                                                                                        |   |
| Option C: Lenz's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Option B:                     | Flemming's right hand rule                                                                             |   |
| Option D: Biot-Savart's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Option C:                     |                                                                                                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Option D:                     | Biot-Savart's law                                                                                      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                                                                        |   |

| Q2. | Solve any Two Questions (10 Marks each):                                                   |
|-----|--------------------------------------------------------------------------------------------|
|     |                                                                                            |
| i.  | In free space, $V = 6xy^2z + 8$ . Find electric field intensity <b>E</b> and volume charge |
|     | density $\rho_V$ at point P (1, 2,-5)                                                      |

| ii.  | Evaluate both sides of the divergence theorem for the field $\mathbf{D} = 2xy  \mathbf{a_x} + x^2  \mathbf{a_y}  (\text{C/m}^2)$ and a rectangular parallelepiped formed by the planes $x=0$ to 1, $y=0$ to 2, $z=0$ to 3.                          |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| iii. | Define reflection coefficient, transmission coefficient and standing wave ratio. For normal incidence, determine the amplitudes of reflected and transmitted electric and magnetic fields <b>E</b> and <b>H</b> at interface of two regions at z=0. |
|      | Given: Incident Ei= 1.5 x 10 <sup>-3</sup> V/m. $\epsilon_{r1}$ = 8.5, $\mu_{r1}$ = 1, $\sigma_1$ = 0. Second region is free space.                                                                                                                 |

| Q3.  | Solve any Two Questions (10 Marks each):                                                |
|------|-----------------------------------------------------------------------------------------|
| i.   | Derive expression to find magnetic field intensity due to infinite long straight        |
|      | conductor on z-axis by Biot- Savart law                                                 |
| ii.  | State Poynting theorem. Derive mathematical expression for the Poynting theorem         |
|      | and explain the meaning of each term.                                                   |
| iii. | Explain the concept of electrostatic discharge and magnetic levitation using principles |
|      | of electromagnetics                                                                     |

## **Examination 2020 under cluster \_\_\_\_ (Lead College Shortname)**

Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Revised 2016 Examination: Third Year Semester V

Course Code: ECC503 and Course Name: Electromagnetic Engineering

Time: 1 hour Max. Marks: 50

-----

| Question<br>Number | Correct Option (Enter either 'A' or 'B' or 'C' or 'D') |
|--------------------|--------------------------------------------------------|
| Q1.                | A                                                      |
| Q2.                | A                                                      |
| Q3.                | С                                                      |
| Q4                 | В                                                      |
| Q5                 | В                                                      |
| Q6                 | D                                                      |
| Q7                 | D                                                      |
| Q8.                | D                                                      |
| Q9.                | A                                                      |
| Q10.               | В                                                      |
| Q11.               | С                                                      |
| Q12.               | В                                                      |
| Q13.               | С                                                      |
| Q14.               | С                                                      |
| Q15.               | В                                                      |
| Q16.               | С                                                      |
| Q17.               | С                                                      |
| Q18.               | В                                                      |
| Q19.               | С                                                      |
| Q20.               | С                                                      |

Examination 2020 under cluster \_\_ (Lead College: \_\_\_\_)
Examinations Commencing from 23<sup>rd</sup> December 2020 to 6<sup>th</sup> January 2021 and from 7<sup>th</sup> January 2021 to 20th January 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev2016 Examination: TE Semester V

Course Code: ECC-504 and Course Name: Discrete Time Signal Processing

Time: 2 hour Max. Marks: 80

| Q1.       | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
|-----------|-----------------------------------------------------------------------------------------------------------|
|           |                                                                                                           |
| 1.        | In bilinear transformation, the left-half s-plane is mapped to which of the following in the z-domain?    |
| Option A: | Partially outside the unit circle $ z =1$                                                                 |
| Option B: | Entirely outside the unit circle $ z =1$                                                                  |
| Option C: | Entirely inside the unit circle $ z =1$                                                                   |
| Option D: | Partially inside the unit circle $ z =1$                                                                  |
|           |                                                                                                           |
| 2.        | Twiddle factor $W_4^3 =$                                                                                  |
| Option A: | j                                                                                                         |
| Option B: | 1                                                                                                         |
| Option C: | -1                                                                                                        |
| Option D: | -j                                                                                                        |
|           |                                                                                                           |
| 3.        | $H_1[Z] = 1 + 0.25z^{-1}$ behaves like afilter and                                                        |
|           | $H_2[Z] = 1 - 0.25z^{-1}$ behaves like afilter                                                            |
| Option A: | Low pass, High pass                                                                                       |
| Option B: | High pass, Low pass                                                                                       |
| Option C: | Band Pass, All pass                                                                                       |
| Option D: | All pass, Band pass                                                                                       |
|           |                                                                                                           |
| 4.        | In impulse invariant transformation method for $H(s) = \frac{1}{s-P}$ digital transformation              |
|           | is given as                                                                                               |
| Option A: |                                                                                                           |
|           | $H(z) = \frac{1 - e^{pT} z^{-1}}{1 - e^{pT} z}$                                                           |
| Option B: | $H(z) = \frac{1}{1 - e^{pT} z^{-1}}$ $H(z) = \frac{1}{1 - e^{-pT} z^{-1}}$                                |
| Option C: | $H(z) = \frac{1}{1 + e^{-pT} z^{-1}}$                                                                     |
| Option D: | $H(z) = \frac{10}{1 + e^{pT} z^{-1}}$                                                                     |
|           | 2.00                                                                                                      |
|           |                                                                                                           |

| 5.        | The Quantisation error in Analog to digital conversion (ADC) of a signal is said                             |
|-----------|--------------------------------------------------------------------------------------------------------------|
|           | to be error and this error is assumed to have a probability                                                  |
|           | distribution function (pdf)                                                                                  |
| Option A: | Truncation, Uniform                                                                                          |
| Option B: | Truncation, Gaussian                                                                                         |
| Option C: | Rounding, Uniform                                                                                            |
| Option D: | Rounding, Gaussian                                                                                           |
|           |                                                                                                              |
| 6.        | In the DTMF signal tone number 1 press generates and tones                                                   |
| Option A: | 697 Hz and 1209 Hz                                                                                           |
| Option B: | 770 Hz and 1336 Hz                                                                                           |
| Option C: | 852 Hz and 1336 Hz                                                                                           |
| Option D: | 941 Hz and 1209 Hz                                                                                           |
|           |                                                                                                              |
| 7.        | An FIR filter which has the following property $ \angle H(0) - \angle H(\pi)  = \pi$ behaves                 |
|           | like an                                                                                                      |
| Option A: | Minimum phase system                                                                                         |
| Option B: | Maximum phase system                                                                                         |
| Option C: | Mixed phase system                                                                                           |
| Option D: | Zero phase system                                                                                            |
|           |                                                                                                              |
| 8.        | The simultaneous fetch of code as data is done in architecture                                               |
| Option A: | Harvard architecture                                                                                         |
| Option B: | Von-Neumann architecture                                                                                     |
| Option C: | Very large instruction word architecture                                                                     |
| Option D: | Modified Harvard architecture                                                                                |
|           |                                                                                                              |
| 9.        | The relation between analog and digital frequency is nonlinear in case of                                    |
| Option A: | Impulse invariant transformation.                                                                            |
| Option B: | Bilinear transformation.                                                                                     |
| Option C: | Frequency sampling.                                                                                          |
| Option D: | chebyshev sampling                                                                                           |
| 10        | Dance of David off amon for two?                                                                             |
| 10.       | Range of Round off error for two's complement binary number representation with B number of bits is given as |
| Ontion A: |                                                                                                              |
| Option A: | $\left  -\left(\frac{2^{-B}}{2}\right) \le \epsilon_R \le \left(\frac{2^{-B}}{2}\right)$                     |
| Option B: |                                                                                                              |
| option B. | $-\left(2^{-B}\right) \le \epsilon_{R} \le 0$                                                                |
| Option C: | $-\left(2^{-B}\right) \le \epsilon_R \le \left(2^{-B}\right)$                                                |
| Ontin     |                                                                                                              |
| Option D: | $\left -\left(2^{+B}\right) \le \epsilon_R \le 0\right $                                                     |
|           |                                                                                                              |
| 11.       | In ECG signal the heart rate is computed using interval                                                      |
| Option A: | R-R interval                                                                                                 |
| Option B: | S-S interval                                                                                                 |
| Option C: | T-T interval                                                                                                 |
| Option D: | Q-Q interval                                                                                                 |
|           |                                                                                                              |
| L         | I .                                                                                                          |

| 10        |                                                                                      |
|-----------|--------------------------------------------------------------------------------------|
| 12.       | The normalized transition width of a Rectangular window of length N is written       |
| 0 1: 4    | as                                                                                   |
| Option A: | $\left(\frac{3.1}{N}\right)$                                                         |
| Option B: | 3.3                                                                                  |
|           | N .                                                                                  |
| Option C: | $\frac{5.5}{N}$                                                                      |
| Option D: | 0.9                                                                                  |
| option B. | N                                                                                    |
|           |                                                                                      |
| 13.       | If an input signal x[n] having a range 10V is passed through a 6-bit quantizer then  |
|           | the quantization step size                                                           |
| Option A: | 0.15625                                                                              |
| Option B: | 0.015625                                                                             |
| Option C: | 0.00244                                                                              |
| Option D: | 0.0244                                                                               |
|           |                                                                                      |
| 14.       | The DIT FFT algorithm divides the sequence into                                      |
| Option A: | Positive and negative values                                                         |
| Option B: | Even and Odd samples                                                                 |
| Option C: | Upper higher and lower spectrum                                                      |
| Option D: | Small and large samples                                                              |
|           |                                                                                      |
| 15.       | The architecture that employs instruction level parallelism is                       |
| Option A: | Von-Neumann architecture                                                             |
| Option B: | Harvard architecture                                                                 |
| Option C: | Modified Harvard architecture                                                        |
| Option D: | VLIW architecture                                                                    |
|           |                                                                                      |
| 16.       | The normalized transfer function of lowpass filter is transformed to highpass filter |
|           | with cutoff frequency, $\Omega c$ by the transformation                              |
| Option A: | $S_n \rightarrow s^* \Omega c$                                                       |
| Option B: | $S_n \rightarrow s/\Omega c$                                                         |
| Option C: | $S_n \rightarrow \Omega c/s$                                                         |
| Option D: | $S_n \rightarrow s^2 \times \Omega c$                                                |
| opnon D.  |                                                                                      |
| 17.       | The sign magnitude and twos complement representation of the decimal number          |
| 17.       | (-10) is given as andrespectively                                                    |
| Option A: | 01010, 10101                                                                         |
| Option B: | 11010, 10110                                                                         |
| Option C: | 1010, 0110                                                                           |
| Option C: | -1010, -0101                                                                         |
| Option D. | 1010, 0101                                                                           |
| 18.       | If DFT $\{x(n)\}=X(k)$ , then DFT $\{x(n+m)\}$ is                                    |
| Option A: | $-j2\pi km$                                                                          |
| Option A. | $X(k) e^{-N}$                                                                        |
| Option B: | $\frac{j2\pi km}{N}$                                                                 |
| Ontine    | $X(k) e^{-N}$                                                                        |
| Option C: | $X(k) e^{\frac{j - k \kappa}{mN}}$                                                   |
|           | 1 \ /                                                                                |

| Option D: | $X(k) e^{\frac{-j2\pi k}{mN}}$                                                                                                  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                 |
| 19.       | The location of compulsory zero in a Type II linear phase FIR filter is at and in Type IV is at                                 |
| Option A: | z = -1, z = +1                                                                                                                  |
| Option B: | z = +1, z = -1                                                                                                                  |
| Option C: | $z = \pm 1$ , No compulsory zeros                                                                                               |
| Option D: | No compulsory zeros, $z = \pm 1$                                                                                                |
|           |                                                                                                                                 |
| 20.       | If an N-point sequence, If N=16, the total number of complex additions and multiplications using Direct Computation of DFT are, |
| Option A: | 240,256                                                                                                                         |
| Option B: | 256,240                                                                                                                         |
| Option C: | 256,256                                                                                                                         |
| Option D: | 240,300                                                                                                                         |

| Q2   |                                                                                                                                               |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| A    | Solve any Two 5 marks each                                                                                                                    |
| i.   | Identify the type of filter if the pole-zero plot is given as shown. Also draw its frequency response and find its transfer function  Z plane |
|      | 2 zeros                                                                                                                                       |
| ii.  | A digital filter with a 3 dB bandwidth of $0.4\pi$ is to be designed from the analog                                                          |
|      | filter whose system response is: $H(s) = \frac{\Omega c}{s + \Omega c}$ Use the bilinear transformation and                                   |
|      | obtain H(z).                                                                                                                                  |
| iii. | Explain with block diagram application of DSP in RADAR signal processing                                                                      |
| В    | Solve any One 10 marks each                                                                                                                   |
| i.   | Design a linear phase FIR Band pass filter to pass frequencies in the range $0.4\pi$ to                                                       |
|      | $0.65\pi$ rad/sample by taking N = 7 and using a Hanning window                                                                               |
| 11.  | Compute DFT of sequence $x(n)=\{2,2,2,2,1,1,1,1\}$ using DIF-FFT algorithm                                                                    |

| Q3.  |                                                                                                                    |                           |
|------|--------------------------------------------------------------------------------------------------------------------|---------------------------|
| A    | Solve any Two                                                                                                      | 5 marks each              |
| i.   | Find DFT of $x[n]=\{1,2,3,2\}$ and using these results find DFT $x1[n]=\{1+j1,2+j2,3+j3,2+j2\}$                    | of                        |
| ii.  | Explain Multiply and accumulate (MAC) unit                                                                         |                           |
| iii. | Specify the characteristics and location of compulsory zero Type III and Type IV FIR filters                       | os in Type I, Type II,    |
| В    | Solve any One 1                                                                                                    | 0 marks each              |
| i.   | Design a linear phase FIR low pass filter with cut off frequency and order $N = 5$ using frequency sampling method | ency of $0.75\pi$ rad/sec |

| ii. | A second order filter $H(z) = \frac{1}{1 - 0.95z^{-1} + 0.225z^{-2}}$ . If the register length is 4 bits |
|-----|----------------------------------------------------------------------------------------------------------|
|     | with MSB as sign bit. Find the effect of Quantization ( <b>rounding off</b> ) on the pole                |
|     | locations if the filter is realized using Direct Form II and cascading structures. In                    |
|     | which case shift from the actual pole location due to quantization is less? Also,                        |
|     | draw the noise model for a cascaded structure realization.                                               |

# Examination 2020 under cluster \_\_ (Lead College: \_\_\_\_\_)

Examinations Commencing from 23<sup>rd</sup> December 2020 to 6<sup>th</sup> January 2021 and from 7<sup>th</sup> January 2021 to 20<sup>th</sup> January 2021

#### Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2016 Examination: TE Semester V

Course Code: ECC-504 and Course Name: Discrete Time Signal Processing

Time: 2 hour Max. Marks: 80

| Question<br>Number | Correct Option (Enter either 'A' or 'B' or 'C' or 'D') |
|--------------------|--------------------------------------------------------|
| Q1.                | C.                                                     |
| Q2.                | A.                                                     |
| Q3.                | A.                                                     |
| Q4                 | A.                                                     |
| Q5                 | C.                                                     |
| Q6                 | A.                                                     |
| Q7                 | B.                                                     |
| Q8.                | A.                                                     |
| Q9.                | B.                                                     |
| Q10.               | A.                                                     |
| Q11.               | A.                                                     |
| Q12.               | D.                                                     |
| Q13.               | A.                                                     |
| Q14.               | B.                                                     |
| Q15.               | D.                                                     |
| Q16.               | C.                                                     |
| Q17.               | B.                                                     |
| Q18.               | B.                                                     |
| Q19.               | A.                                                     |
| Q20.               | A.                                                     |

### **Examination 2020 under cluster 5 (Lead College: APSIT)**

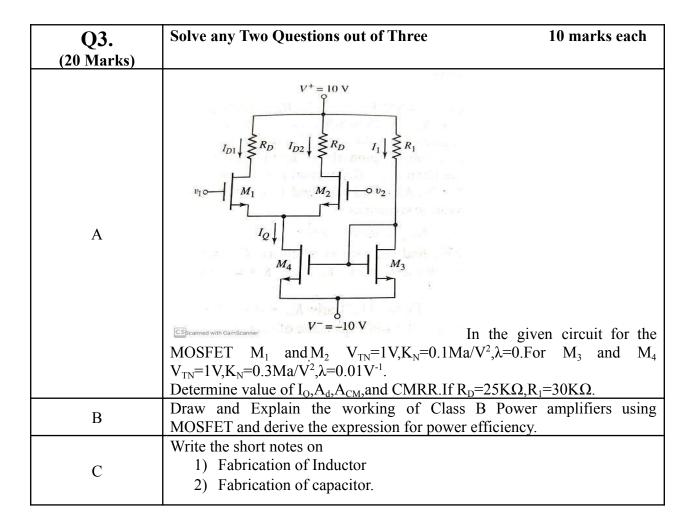
Examinations Commencing from 7th January 2021 to 20th January 2021

Program: EXTC Curriculum Scheme: Rev2016.

Examination: TE Semester V
Course Code: ECCDLO5011 and Course Name: MICROELECTRONICS.

Time: 2 hour Max. Marks: 80

\_\_\_\_\_\_


| Q1.       | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks (2 Marks each) |
|-----------|--------------------------------------------------------------------------------------------------------------------------|
| 1.        | For N Channel MOSFET the term $\mu_n C_{OX}$ is known as                                                                 |
| Option A: | Process Transconductance                                                                                                 |
| Option B: | Device Transconductance                                                                                                  |
| Option C: | Device Conductance                                                                                                       |
| Option D: | Process Conductance                                                                                                      |
| option B. | 1100000 Conductance                                                                                                      |
| 2.        | Condition for MOSFET to work in the deep triode region is                                                                |
| Option A: | $V_{\mathrm{DS}} = V_{\mathrm{GS}}$                                                                                      |
| Option B: | $V_{ m DS}$ < $V_{ m GS}$                                                                                                |
| Option C: | $V_{DS} \geq (V_{GS} - V_{TN})$                                                                                          |
| Option D: | $V_{DS} \ge 2(V_{GS} - V_{TN})$                                                                                          |
| 1         | 1 DS 34 GS 1 IN)                                                                                                         |
| 3.        | MOSFET Offers finite output resistance because of                                                                        |
| Option A: | Punch through effect                                                                                                     |
| Option B: | Channel length Modulation Effect                                                                                         |
| Option C: | Body Effect                                                                                                              |
| Option D: | Hot electron effect                                                                                                      |
|           |                                                                                                                          |
| 4.        | MOSFET works as linear resistor in                                                                                       |
| Option A: | Saturation region                                                                                                        |
| Option B: | Triode region                                                                                                            |
| Option C: | Deep Triode region                                                                                                       |
| Option D: | Breakdown region                                                                                                         |
|           |                                                                                                                          |
| 5.        | In case of full scaling, if Scaling factor S=2 and let P is the power dissipation of                                     |
|           | MOSFET before scaling then after scaling Power dissipation is                                                            |
| Option A: | P                                                                                                                        |
| Option B: | P/2                                                                                                                      |
| Option C: | P/4                                                                                                                      |
| Option D: | P/8                                                                                                                      |
|           |                                                                                                                          |
| 6.        | Polysilicon is used for gate in MOSFET because                                                                           |
| Option A: | It is semi metal                                                                                                         |
| Option B: | It has lattice matching with silicon                                                                                     |
| Option C: | It is easy to fabricate                                                                                                  |
| Option D: | Its cost is less.                                                                                                        |

| 7.        | As per $\lambda$ based design rule the minimum spacing between two adjacent contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /.        | cut is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Option A: | $1\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Option B: | $2\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Option C: | $3\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Option D: | $4\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.        | In Cascode current source the output resistance is approximately given as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Option A: | $g_{\mathrm{m}}r_{\mathrm{o}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Option B: | $g_{\rm m}^2 r_{\rm o}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option C: | $r_0^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option D: | $g_{\rm m}r_{\rm o}^{\ 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9.        | In Current Mirror circuit if 2 (W/L)o/p=(W/L)ref,then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Option A: | Io=Iref/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Option B: | Iref=2Io                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Option C: | Io=2Iref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Option D: | Io=3Iref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.       | For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and $\lambda$ =0.01v^-1,then its Intrinsic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | gain is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option A: | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Option B: | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Option C: | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Option D: | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11.       | In a CS Amplifier with Passive load for MOSFET Process Transconductance is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11.       | $0.1 \text{ma/v}^2$ , (W/L)=20, Overdrive voltage is 1V, $\lambda$ =0 and RL=10K, then its voltage gain is.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Option A: | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Option B  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Option C: | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Option D: | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12.       | MOSFET works as an Amplifier in Region.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option A: | Cut-off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option B: | Breakdown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Option C: | Triode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Option D: | Saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13.       | The voltage gain of double Cascode Amplifier is.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Option A: | $g_{\rm m} r_{\rm o}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Option B: | $(g_m r_o)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Option C: | $(g_m r_o)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Option D: | $(g_{\rm m}r_{\rm o})^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.4       | For a Dual input Dalamand autout differential annulifier differential annulifi |
| 14.       | For a Dual input Balanced output differential amplifier, differential mode voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ontion A: | gain is given as .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Option A: | $-g_{\rm m}Z_{\rm L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Option B: | $-g_{\rm m}Z_{\rm L}/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Option C: | $-g_{\rm m}^2 Z_{\rm L}$                                                         |
|-----------|----------------------------------------------------------------------------------|
| Option D: | $-g_{\rm m}^2 Z_{\rm L}$ $-g_{\rm m}^2 Z_{\rm I}/2$                              |
| •         |                                                                                  |
| 15.       | Dual power supply biasing is used in differential amplifier for                  |
| Option A: | To improve voltage gain.                                                         |
| Option B: | To improve Bandwidth                                                             |
| Option C: | To improve input impedance                                                       |
| Option D: | To avoid coupling capacitors.                                                    |
|           |                                                                                  |
| 16.       | For a differential amplifier $A_d=100$ , $A_{CM}=10$ , then CMRR in Decibel is . |
| Option A: | 10                                                                               |
| Option B: | 20                                                                               |
| Option C: | 30                                                                               |
| Option D: | 40                                                                               |
|           |                                                                                  |
| 17.       | In class D power amplifier the MOS transistor operates                           |
| Option A: | Triode region                                                                    |
| Option B: | Saturation Region                                                                |
| Option C: | Acts as switch                                                                   |
| Option D: | Breakdown region                                                                 |
|           |                                                                                  |
| 18.       | In power amplifier circuit the use of RFC is                                     |
| Option A: | Impedance matching                                                               |
| Option B: | Providing isolation between DC & AC                                              |
| Option C: | Boosting of power gain                                                           |
| Option D: | Reducing the voltage swing                                                       |
|           |                                                                                  |
| 19.       | A reverse bias P-N junction behaves like a                                       |
| Option A: | Variable Inductor                                                                |
| Option B: | Variable capacitor                                                               |
| Option C: | Rectifier                                                                        |
| Option D: | Clipper                                                                          |
| 20        |                                                                                  |
| 20.       | To fabricate Inductor inside the IC we use                                       |
| Option A: | Plastic spiral wire                                                              |
| Option B: | Polysilicon spiral wire                                                          |
| Option C: | Silicon spiral wire                                                              |
| Option D: | Metal spiral wire                                                                |

| Q2<br>(20 Marks) | Solve any Two Questions out of Three 10 marks each                                         |
|------------------|--------------------------------------------------------------------------------------------|
| A                | What do you mean by Short Channel MOSFET, explain various Short channel effects in MOSFET. |

| В | For the circuit shown V <sup>+</sup> =10V.Transistors parameters are $V_{TN}$ =2V, $\mu_n C_{OX}$ =40 $\mu$ A/V <sup>2</sup> and $\lambda$ =0. Design the circuit such that $I_{REF}$ =0.5Ma, $I_O$ =0.2Ma and $M_2$ remains biased in saturation region for $V_{DS}$ $\geq$ 1V. |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С | Draw the circuit diagram of a common source amplifier with NMOS diode connected load. Derive the expression for voltage gain and output voltage swing.                                                                                                                           |



## **Examination 2020 under cluster 5 (Lead College: APSIT)**

Examinations Commencing 7th January 2021 to 20th January 2021

Program:EXTC

Curriculum Scheme: Rev2016 Examination: TE Semester V

Course Code: ECCDLO5011 and Course Name: MICROELECTRONICS

Time: 2 hour Max. Marks: 80

| Question<br>Number | Correct Option (Enter either 'A' or 'B' or 'C' or 'D') |
|--------------------|--------------------------------------------------------|
| Q1.                | A                                                      |
| Q2.                | D                                                      |
| Q3.                | В                                                      |
| Q4                 | С                                                      |
| Q5                 | С                                                      |
| Q6                 | В                                                      |
| Q7                 | С                                                      |
| Q8.                | D                                                      |
| Q9.                | A                                                      |
| Q10.               | A                                                      |
| Q11.               | В                                                      |
| Q12.               | D                                                      |
| Q13.               | С                                                      |
| Q14.               | A                                                      |
| Q15.               | D                                                      |
| Q16.               | В                                                      |
| Q17.               | С                                                      |
| Q18.               | В                                                      |
| Q19.               | В                                                      |
| Q20.               | D                                                      |

# Examination 2020 under cluster \_\_(Lead College: \_\_\_\_\_)

Examinations Commencing from 23<sup>rd</sup> December 2020 to 6<sup>th</sup> January 2021 and from 7<sup>th</sup> January 2021 to 20<sup>th</sup> January 2021

Program: Electronics & Telecommunication Engineering

Curriculum Scheme: Rev2016 Examination: TE Semester: V

Course Code: ECCDLO5012 and Course Name: TV & Video Engineering

Time: 2-hour Max. Marks: 80

| Q1.       | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
|-----------|-----------------------------------------------------------------------------------------------------------|
|           |                                                                                                           |
| 1.        | Which of the following blocks convert all the picture information into an                                 |
|           | equivalent electrical signal?                                                                             |
| Option A: | RF tuner                                                                                                  |
| Option B: | Common IF amplifier                                                                                       |
| Option C: | Television camera                                                                                         |
| Option D: | Video detector                                                                                            |
|           |                                                                                                           |
| 2.        | In the Television system, which of the following is not a complementary colour?                           |
| Option A: | Cyan                                                                                                      |
| Option B: | Magenta                                                                                                   |
| Option C: | Green                                                                                                     |
| Option D: | Magenta                                                                                                   |
|           |                                                                                                           |
| 3.        | If there are 625 lines per TV picture, then lines per field are .                                         |
| Option A: | 1250                                                                                                      |
| Option B: | 625                                                                                                       |
| Option C: | 312.5                                                                                                     |
| Option D: | 2500                                                                                                      |
| •         |                                                                                                           |
| 4.        | Which of the following is not true about the colour circle?                                               |
| Option A: | A primary and its complement can be considered as opposite to each other and                              |
| _         | hence the colour difference signals turn out to be of opposite polarities.                                |
| Option B: | The 3 primary colours R, G and B are represented by three radial vectors that are                         |
|           | 120 degree phase shifted with respect to each other.                                                      |
| Option C: | The degree of saturation of a colour increases as we move along its vector from                           |
|           | the center to the circumference of the colour wheel.                                                      |
| Option D: | Hue of a colour is represented by the length of the phasor                                                |
|           |                                                                                                           |
| 5.        | Steps of Video compression based on Motion Compensation are in the following                              |
|           | order:                                                                                                    |
| Option A: | Motion Compensation based prediction, derivation of prediction error and Motion                           |
|           | Estimation                                                                                                |
| Option B: | Motion Estimation, Motion Compensation based prediction and derivation of                                 |
|           | prediction error                                                                                          |

| Option C: | Motion Compensation based prediction, Motion Estimation and derivation of prediction error |
|-----------|--------------------------------------------------------------------------------------------|
| Option D: | Derivation of prediction error, Motion Compensation based prediction and Motion Estimation |
| 6.        | Chromecast devices do not haveconnectivity option.                                         |
| Option A: | HDMI                                                                                       |
| Option B: | Wi-Fi                                                                                      |
| Option C: | Ethernet                                                                                   |
| Option D: | RCA                                                                                        |
| 7.        | In DVB standard, the word DVB Stands for                                                   |
| Option A: | Direct Video Broadcasting                                                                  |
| Option B: | Digital Video Broadcasting                                                                 |
| Option C: | Digital Via Broadcasting                                                                   |
| Option D: | Direct Via Broadcasting                                                                    |
|           | 3                                                                                          |
| 8.        | Select the correct value of scanning frequency for luminance and for chrominance           |
|           | signal in MAC encoding.                                                                    |
| Option A: | 24 MHz for luminance and 13.5 MHz for chrominance                                          |
| Option B: | 13.5 MHz for luminance and 6.75MHz for chrominance                                         |
| Option C: | 12.5 MHz for luminance and 24.5 MHz for chrominance                                        |
| Option D: | 6.75 MHz for luminance and 4.7 MHz for chrominance                                         |
|           |                                                                                            |
| 9.        | What is the value of the Colour Subcarrier frequency of NTSC TV system?                    |
| Option A: | 3.58 MHz                                                                                   |
| Option B: | 4.43 MHz                                                                                   |
| Option C: | 5.5 MHz                                                                                    |
| Option D: | 2.45 MHz                                                                                   |
|           |                                                                                            |
| 10.       | How much is the active scan line period in TV?                                             |
| Option A: | 52 μsec                                                                                    |
| Option B: | 32 μsec                                                                                    |
| Option C: | 64 μsec                                                                                    |
| Option D: | 16 μsec                                                                                    |
| 11.       | Interlace scanning is used in televisions to avoid problem of                              |
| Option A: | Ghost image                                                                                |
| Option B: | Flicker                                                                                    |
| Option C: | Multipath interference                                                                     |
| Option D: | Propagation delay                                                                          |
|           |                                                                                            |
| 12.       | Which of the following is a technological convergence of computers, television             |
| Ontion A: | sets and set-top boxes?  LED TV                                                            |
| Option A: |                                                                                            |
| Option B: | HDTV<br>Smart TV                                                                           |
| Option C: | Siliait 1 V                                                                                |

| Option D: | LCD TV                                                                                                                  |
|-----------|-------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                         |
| 13.       | The amount of light intensity as perceived by the eye regardless of the colour is termed as .                           |
| Option A: | Hue                                                                                                                     |
| Option B: | Colour burst                                                                                                            |
| Option C: | Saturation                                                                                                              |
| Option D: | Luminance                                                                                                               |
| •         |                                                                                                                         |
| 14.       | Which of the following is not a characteristic of the PAL television system?                                            |
| Option A: | The weighted $(B - Y)$ and $(R - Y)$ signals are modulated without being given a phase shift of 33°.                    |
| Option B: | On modulation both the colour difference quadrature signals are allowed the same bandwidth of about 1.3 MHz             |
| Option C: | PAL television systems are susceptible to differential phase error.                                                     |
| Option D: | phase of the subcarrier to one of the modulators is reversed from $+90^{\circ}$ to $-90^{\circ}$ at the line frequency. |
| 15.       | DVB-S standard only specifies physical link characteristics and framing but                                             |
|           | is used as the transport stream for it.                                                                                 |
| Option A: | MPEG – 4                                                                                                                |
| Option B: | MPEG – 3                                                                                                                |
| Option C: | MPEG – 2                                                                                                                |
| Option D: | MPEG – 1                                                                                                                |
| 16.       | In the 1250 line HDTV standard, the number of active lines are .                                                        |
| Option A: | 1152                                                                                                                    |
| Option B: | 1035                                                                                                                    |
| Option C: | 1250                                                                                                                    |
| Option D: | 1050                                                                                                                    |
|           |                                                                                                                         |
| 17.       | Which of the following statements is not correct with respect to IPTV?                                                  |
| Option A: | It can support live television, time shifted TV, video on demand.                                                       |
| Option B: | IPTV can offer more channels than conventional TV systems.                                                              |
| Option C: | It reduces the bandwidth of the system.                                                                                 |
| Option D: | IPTV services can use wireless home networking technology.                                                              |
| 10        |                                                                                                                         |
| 18.       | Which of the following DVB systems sends data in physical layer pipes?                                                  |
| Option A: | DVB-T                                                                                                                   |
| Option B: | DVB-T2                                                                                                                  |
| Option C: | DVB -H                                                                                                                  |
| Option D: | DVB-S                                                                                                                   |
| 19.       | Which of the following standards is also called as MPEG-part10 Advance Video                                            |
| Ontion    | Coding?                                                                                                                 |
| Option A: | H.264                                                                                                                   |
| Option B: | H.265                                                                                                                   |
| Option C: | H.262                                                                                                                   |
| Option D: | H.263                                                                                                                   |
|           |                                                                                                                         |

| 20.       | With reference to digital video, which of the following statements is incorrect?                                         |
|-----------|--------------------------------------------------------------------------------------------------------------------------|
| Option A: | Line rate is simply the frame rate multiplied by the number of lines per total frame.                                    |
| Option B: | Refresh rate is generally engineered into a system. Once chosen, it cannot easily be changed.                            |
| Option C: | In a bright environment such as an office, a refresh rate above 70 Hz might be required.                                 |
| Option D: | In a dim viewing environment typical of television viewing, such as a living room, a flash rate of 200 Hz is sufficient. |

# Option 3

| Q2<br>(20 Marks) |                                                                                                                         |    |
|------------------|-------------------------------------------------------------------------------------------------------------------------|----|
| A                | Solve any Two 5 marks each                                                                                              | :h |
| i.               | Explain the terms Hue, Saturation and Luminance related to colour TV system.                                            |    |
| ii.              | What is MAC signal? What are its advantages?                                                                            |    |
| iii.             | Write a short note on Chromecast.                                                                                       |    |
| В                | Solve any One 10 marks each                                                                                             | h  |
| i.               | Draw composite video signal for 3 scanning line sequence and explain various components in it.                          |    |
| ii.              | With the help of neat diagram explain MPEG-2 principle for image compression. Also state its features and applications. |    |

| Q3. (20 Marks) |                                                                                                                                |
|----------------|--------------------------------------------------------------------------------------------------------------------------------|
| A              | Solve any Two 5 marks each                                                                                                     |
| i.             | Compare NTSC and PAL television systems.(At least 5 points of comparison)                                                      |
| ii.            | Draw the block diagram of monochrome TV transmitter and explain its working.                                                   |
| iii.           | Explain the following terms related to digital video:  1) Pixel Array 2) Frame Rate and Refresh Rate                           |
| В              | Solve any One 10 marks each                                                                                                    |
| i.             | Explain satellite television with respect to block diagram, basic operation, frequency allocation, advantages and limitations. |
| ii.            | Explain IPTV with respect to architecture, internet protocols used, advantages and limitations.                                |

Examination 2020 under cluster \_\_ (Lead College: \_\_\_\_)
Examinations Commencing from 23<sup>rd</sup> December 2020 to 6<sup>th</sup> January 2021 and from 7<sup>th</sup> January 2021 to 20th January 2021

Program: Electronics & Telecommunication Engineering

Curriculum Scheme: Rev2016 Examination: TE Semester: V

Course Code: ECCDLO5012 and Course Name: TV & Video Engineering

Max. Marks: 80 Time: 2-hour

| Question<br>Number | Correct Option |
|--------------------|----------------|
| Q1.                | C              |
| Q2.                | С              |
| Q3.                | С              |
| Q4                 | D              |
| Q5                 | В              |
| Q6                 | D              |
| Q7                 | В              |
| Q8.                | В              |
| Q9.                | A              |
| Q10.               | A              |
| Q11.               | В              |
| Q12.               | С              |
| Q13.               | D              |
| Q14.               | С              |
| Q15.               | С              |
| Q16.               | A              |
| Q17.               | D              |
| Q18.               | В              |
| Q19.               | A              |
| Q20.               | D              |

**Examination 2020 under cluster \_\_(Lead College: \_\_\_\_)**Examinations Commencing from 23<sup>rd</sup> December 2020 to 6<sup>th</sup> January 2021 and from 7<sup>th</sup> January 2021 to 20th January 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2016 Examination: TE, Semester: V

Course Code: ECCDLO 5013 and Course Name: Elective I: Finite Automata Theory

Time: 2 hour Max. Marks: 80

| Q1.       | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks                          |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                    |
| 1.        | A switching function $F$ can be decomposed into two threshold elements $F_1$ and $F_2$ . The function $F$ can be implemented using |
| Option A: | 2 threshold elements interconnected to perform AND operation                                                                       |
| Option B: | 2 threshold elements interconnected to perform NAND operation                                                                      |
| Option C: | 2 threshold elements interconnected to perform OR operation                                                                        |
| Option D: | 2 threshold elements interconnected to perform NOR operation                                                                       |
| 2.        | How many flip-flops will be complemented in a 10-bit binary ripple counter to reach the next count after the count 1001100111      |
| Option A: | 4                                                                                                                                  |
| Option B: | 5                                                                                                                                  |
| Option C: | 6                                                                                                                                  |
| Option D: | 9                                                                                                                                  |
|           |                                                                                                                                    |
| 3.        | The race in which stable state depends on order is called                                                                          |
| Option A: | Critical race                                                                                                                      |
| Option B: | Identical race                                                                                                                     |
| Option C: | Non critical race                                                                                                                  |
| Option D: | Defined race                                                                                                                       |
|           |                                                                                                                                    |
| 4.        | The table having one state in each row is called                                                                                   |
| Option A: | Transition table                                                                                                                   |
| Option B: | State table                                                                                                                        |
| Option C: | Flow table                                                                                                                         |
| Option D: | Primitive flow table                                                                                                               |
| 5.        | Conditional box has a shape of                                                                                                     |
| Option A: | Square                                                                                                                             |
| Option B: | Rectangle                                                                                                                          |
| Option C: | Oval                                                                                                                               |
| Option D: | Pentagon                                                                                                                           |
|           |                                                                                                                                    |

| Option A: 7 Option B: 19 Option D: 33  7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.         | How many number of prime implicants are there in the expression $\Gamma(y,y,z) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Option A: 7 Option B: 19 Option C: 3 Option D: 53  7. In digital circuits permanent faults may arises due to Option A: Noise Option B: Non ideal transient behaviour of components Option B: Non ideal transient behaviour of components Option C: Failure of component Option D: Propagation time  8. A threshold function Option A: May be a unate function Option A: May be a unate function Option D: Is always a unate function Option D: may or may not be unate function  9. An AB flip-flop is constructed from an SR flip-flop. The expression for next Q(n+1) state is  A B + BQ Option C: Both A and B Option D: A+B  10. Race condition is present in Option A: synchronous logic circuit Option B: asynchronous logic circuit Option C: ideal logic circuit Option D: Combinational logic circuit Option D: Combinational logic circuit Option D: Combinational logic circuit Option D: Intersection set Option B: Essential prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.         | How many number of prime implicants are there in the expression $F(x, y, z) = \frac{1}{2} \frac{1}{2}$ |
| Option B: 19 Option C: 3 Option D: 53  7. In digital circuits permanent faults may arises due to Option A: Noise Option B: Non ideal transient behaviour of components Option C: Failure of component Option D: Propagation time  8. A threshold function Option A: May be a unate function Option A: Is always a unate function Option D: Is always a unate function Option D: may or may not be unate function  9. An AB flip-flop is constructed from an SR flip-flop. The expression for next Q(n+1) state is  AB + AQ Option B: A+B  Option C: Both A and B Option D: A+B  10. Race condition is present in Option A: synchronous logic circuit Option A: ideal logic circuit Option C: ideal logic circuit Option D: Combinational logic circuit Option D: Combinational logic circuit Option D: Intersection set Option B: Essential prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O 1: A     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option C: 3 Option D: 53  7. In digital circuits permanent faults may arises due to Option A: Noise Option B: Non ideal transient behaviour of components Option D: Propagation time  8. A threshold function Option B: is not a unate function Option B: is not a unate function Option D: Is always a unate function Option D: may or may not be unate function  9. An AB flip-flop is constructed from an SR flip-flop. The expression for next $Q(n+1)$ state is $Q(n+1)$ state |            | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Option D:       53         7.       In digital circuits permanent faults may arises due to         Option B:       Noise         Option B:       No ideal transient behaviour of components         Option C:       Failure of component         Option D:       Propagation time         8.       A threshold function         Option A:       May be a unate function         Option B:       is not a unate function         Option D:       may or may not be unate function         9.       An AB flip-flop is constructed from an SR flip-flop. The expression for next Q(n+1) state is         A = B       S = T Q         Qption B:       AB + AQ         Option C:       Both A and B         Option D:       A+B         10.       Race condition is present in         Option B:       asynchronous logic circuit         Option C:       ideal logic circuit         Option D:       Combinational logic circuit         Option D:       Combinational logic circuit         Option B:       Essential prime implicant         Option C:       Prime implicant         Option D:       Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7. In digital circuits permanent faults may arises due to Option A: Option B: Option C: Option D: Option D: Propagation time  8. A threshold function Option A: Option B: is not a unate function Option D: Option D:  An AB flip-flop is constructed from an SR flip-flop. The expression for next Q(n+1) state is Q(n+1) state is  Option D: A+B  10. Race condition is present in Option B: Aynchronous logic circuit Option C: Ideal logic circuit Option D: Combinational logic circuit Option D: Combinational logic circuit An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called Option C: Prime implicant Option D: Union Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option A:         Noise           Option B:         Non ideal transient behaviour of components           Option C:         Failure of component           Option D:         Propagation time           8.         A threshold function           Option B:         is not a unate function           Option C:         Is always a unate function           Option D:         may or may not be unate function           9.         An AB flip-flop is constructed from an SR flip-flop. The expression for next $Q(n+1)$ state is           Q(n+1) state is         S SET Q           R cur Q         Prion B:           Option B: $\overline{AB} + \overline{BQ}$ Option D:         A+B           10.         Race condition is present in           Option B:         asynchronous logic circuit           Option C:         ideal logic circuit           Option D:         Combinational logic circuit           Option D:         Combinational logic circuit           11.         An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called           Option B:         Essential prime implicant           Option D:         Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Option D:  | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Option A:         Noise           Option B:         Non ideal transient behaviour of components           Option C:         Failure of component           Option D:         Propagation time           8.         A threshold function           Option B:         is not a unate function           Option C:         Is always a unate function           Option D:         may or may not be unate function           9.         An AB flip-flop is constructed from an SR flip-flop. The expression for next $Q(n+1)$ state is           Q(n+1) state is         S SET Q           R cur Q         Prion B:           Option B: $\overline{AB} + \overline{BQ}$ Option D:         A+B           10.         Race condition is present in           Option B:         asynchronous logic circuit           Option C:         ideal logic circuit           Option D:         Combinational logic circuit           Option D:         Combinational logic circuit           11.         An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called           Option B:         Essential prime implicant           Option D:         Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option B: Non ideal transient behaviour of components Option C: Failure of component Option D: Propagation time  8. A threshold function Option B: is not a unate function Option B: is not a unate function Option D: Is always a unate function Option D: may or may not be unate function  9. An AB flip-flop is constructed from an SR flip-flop. The expression for next O(n+1) state is  AB + AQ Option B: AB + BQ Option C: Both A and B Option D: A+B  10. Race condition is present in Option A: synchronous logic circuit Option B: asynchronous logic circuit Option B: Other Combinational logic circuit Option D: Combinational logic circuit Option D: Combinational logic circuit Option D: Combinational logic circuit Option B: Essential prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | In digital circuits permanent faults may arises due to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Option C:       Failure of component         Option D:       Propagation time         8.       A threshold function         Option A:       May be a unate function         Option D:       Is always a unate function         Option D:       may or may not be unate function         9.       An AB flip-flop is constructed from an SR flip-flop. The expression for next Q(n+1) state is         Option B:       AB + AQ         Option C:       Both A and B         Option D:       A+B         10.       Race condition is present in         Option A:       Synchronous logic circuit         Option B:       asynchronous logic circuit         Option C:       ideal logic circuit         Option D:       Combinational logic circuit         Option D:       Combinational logic circuit         Option B:       An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called         Option B:       Essential prime implicant         Option C:       Prime implicant         Option D:       Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Option A:  | Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Option D: Propagation time  8. A threshold function Option A: May be a unate function Option B: is not a unate function Option D: Is always a unate function Option D: may or may not be unate function  9. An AB flip-flop is constructed from an SR flip-flop. The expression for next O(n+1) state is  AB + AQ Option A: AB + BQ Option C: Both A and B Option D: A+B  10. Race condition is present in Option A: synchronous logic circuit Option B: asynchronous logic circuit Option C: ideal logic circuit Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called Option C: Prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Option B:  | Non ideal transient behaviour of components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8. A threshold function Option A: May be a unate function Option B: is not a unate function Option D: Is always a unate function Option D: may or may not be unate function  9. An AB flip-flop is constructed from an SR flip-flop. The expression for next Q(n+1) state is  AB + AQ Option A: AB + BQ Option C: Both A and B Option D: A+B  10. Race condition is present in Option A: synchronous logic circuit Option B: asynchronous logic circuit Option C: ideal logic circuit Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called Option A: Intersection set Option D: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Option C:  | Failure of component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Option A: May be a unate function Option B: is not a unate function Option C: Is always a unate function Option D: may or may not be unate function  9. An AB flip-flop is constructed from an SR flip-flop. The expression for next Q(n+1) state is  AB + AQ Option B: AB + BQ Option C: Both A and B Option D: A+B  10. Race condition is present in Option A: synchronous logic circuit Option B: asynchronous logic circuit Option C: ideal logic circuit Option C: ideal logic circuit Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called Option C: Prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Option D:  | Propagation time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Option A: May be a unate function Option B: is not a unate function Option C: Is always a unate function Option D: may or may not be unate function  9. An AB flip-flop is constructed from an SR flip-flop. The expression for next Q(n+1) state is  AB + AQ Option B: AB + BQ Option C: Both A and B Option D: A+B  10. Race condition is present in Option A: synchronous logic circuit Option B: asynchronous logic circuit Option C: ideal logic circuit Option C: ideal logic circuit Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called Option C: Prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option B:       is not a unate function         Option C:       Is always a unate function         Option D:       may or may not be unate function         9.       An AB flip-flop is constructed from an SR flip-flop. The expression for next $Q(n+1)$ state is $Q(n+1)$                                                                          | 8.         | A threshold function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Option B:       is not a unate function         Option C:       Is always a unate function         Option D:       may or may not be unate function         9.       An AB flip-flop is constructed from an SR flip-flop. The expression for next $Q(n+1)$ state is $Q(n+1)$                                                                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option C: Is always a unate function  9. An AB flip-flop is constructed from an SR flip-flop. The expression for next  Q(n+1) state is  R CLR Q  Option A: AB + AQ  Option B: AB + BQ  Option C: Both A and B  Option D: A+B  10. Race condition is present in  Option A: synchronous logic circuit  Option B: asynchronous logic circuit  Option C: ideal logic circuit  Option C: Option C: Orombinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option C: Prime implicant  Option C: Prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option D: may or may not be unate function  9. An AB flip-flop is constructed from an SR flip-flop. The expression for next $Q(n+1)$ state is  A B FR CLR Q  Option A: $\overline{AB} + AQ$ Option B: $\overline{AB} + \overline{BQ}$ Option C: Both A and B  Option D: A+B  10. Race condition is present in Option B: asynchronous logic circuit  Option B: asynchronous logic circuit  Option C: ideal logic circuit  Option C: Ocombinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Dimersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option C: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9. An AB flip-flop is constructed from an SR flip-flop. The expression for next $Q(n+1)$ state is $AB + AQ$ Option A: $AB + BQ$ Option C: Both A and B  Option D: A+B  10. Race condition is present in Option A: synchronous logic circuit  Option B: asynchronous logic circuit  Option C: ideal logic circuit  Option C: ideal logic circuit  Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option A: $\overline{AB} + AQ$ Option B: $\overline{AB} + \overline{BQ}$ Option D: A+B  10. Race condition is present in  Option A: synchronous logic circuit  Option B: asynchronous logic circuit  Option C: ideal logic circuit  Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Option D.  | may or may not be unate function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Option A: $\overline{AB} + AQ$ Option B: $\overline{AB} + \overline{BQ}$ Option D: A+B  10. Race condition is present in  Option A: synchronous logic circuit  Option B: asynchronous logic circuit  Option C: ideal logic circuit  Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.         | An AB flip-flop is constructed from an SR flip-flop. The expression for next                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Option A: $\overline{AB} + AQ$ Option B: $\overline{AB} + \overline{BQ}$ Option C: Both A and B  Option D: A+B  10. Race condition is present in  Option A: synchronous logic circuit  Option B: asynchronous logic circuit  Option C: ideal logic circuit  Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option A: $\overline{AB} + AQ$ Option B: $\overline{AB} + \overline{BQ}$ Option D: A+B  10. Race condition is present in  Option A: synchronous logic circuit  Option B: asynchronous logic circuit  Option C: ideal logic circuit  Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Option A: $\overline{AB} + AQ$ Option B: $\overline{AB} + \overline{BQ}$ Option C: Both A and B  Option D: A+B  10. Race condition is present in  Option A: synchronous logic circuit  Option B: asynchronous logic circuit  Option C: ideal logic circuit  Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option A: $\overline{AB} + AQ$ Option B: $\overline{AB} + \overline{BQ}$ Option C: Both A and B  Option D: A+B  10. Race condition is present in  Option A: synchronous logic circuit  Option B: asynchronous logic circuit  Option C: ideal logic circuit  Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option A: $\overline{AB} + AQ$ Option B: $\overline{AB} + \overline{BQ}$ Option C: Both A and B  Option D: A+B  10. Race condition is present in  Option A: synchronous logic circuit  Option B: asynchronous logic circuit  Option C: ideal logic circuit  Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | $\mathbf{B}$ $\mathbf{R}$ CLR $\overline{\mathbf{Q}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Option B: $\overline{AB} + \overline{BQ}$ Option C: Both A and B  Option D: A+B  10. Race condition is present in  Option A: synchronous logic circuit  Option B: asynchronous logic circuit  Option C: ideal logic circuit  Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option B: $\overline{AB} + \overline{BQ}$ Option C: Both A and B  Option D: A+B  10. Race condition is present in  Option A: synchronous logic circuit  Option B: asynchronous logic circuit  Option C: ideal logic circuit  Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Option A:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option C: Both A and B Option D: A+B  10. Race condition is present in Option A: synchronous logic circuit Option B: asynchronous logic circuit Option C: ideal logic circuit Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called Option A: Intersection set Option B: Essential prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Option 71. | AB + AQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Option C: Both A and B Option D: A+B  10. Race condition is present in Option A: synchronous logic circuit Option B: asynchronous logic circuit Option C: ideal logic circuit Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called Option A: Intersection set Option B: Essential prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Option B:  | $\overline{AB} + \overline{BO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option D: A+B  10. Race condition is present in  Option A: synchronous logic circuit  Option B: asynchronous logic circuit  Option C: ideal logic circuit  Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ontion C:  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10. Race condition is present in Option A: synchronous logic circuit Option B: asynchronous logic circuit Option C: ideal logic circuit Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called Option A: Intersection set Option B: Essential prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option A: synchronous logic circuit Option B: asynchronous logic circuit Option C: ideal logic circuit Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called Option A: Intersection set Option B: Essential prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Орион Б.   | A <sup>T</sup> D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Option A: synchronous logic circuit Option B: asynchronous logic circuit Option C: ideal logic circuit Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called Option A: Intersection set Option B: Essential prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10         | Daga condition is progent in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Option B: asynchronous logic circuit Option C: ideal logic circuit Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called Option A: Intersection set Option B: Essential prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option C: ideal logic circuit  Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option D: Combinational logic circuit  11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Intersection set Option B: Essential prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11. An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Option D:  | Combinational logic circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| completely covered by any single implicant, is called  Option A: Intersection set  Option B: Essential prime implicant  Option C: Prime implicant  Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option A: Intersection set Option B: Essential prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Option B: Essential prime implicant Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option C: Prime implicant Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Option D: Union set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Option C:  | Prime implicant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Option D:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12. The shaded area of the figure is best described by?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.        | The shaded area of the figure is best described by?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|           | <del></del>                                                                                                      |
|-----------|------------------------------------------------------------------------------------------------------------------|
|           | B                                                                                                                |
| Option A: | A' (Complement of A)                                                                                             |
| Option B: | AUB-B                                                                                                            |
| Option C: | $A \cap B$                                                                                                       |
| Option D: | B'(complement of B)                                                                                              |
| Option B. | B (complement of B)                                                                                              |
| 13.       | The T-gate shown below represents F=                                                                             |
|           | A2                                                                                                               |
| Option A: | ĀB                                                                                                               |
| Option B: | $A\overline{B}$                                                                                                  |
| Option C: | AB                                                                                                               |
| Option D: | $\overline{AB}$                                                                                                  |
| 14.       | The binary relation {(1,1), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2)} on the set {1, 2, is                       |
| Option A: | reflective, symmetric and transitive                                                                             |
| Option B: | irreflexive, symmetric and transitive                                                                            |
| Option C: | neither reflective, nor irreflexive but transitive                                                               |
| Option D: | irreflexive and antisymmetric                                                                                    |
| 15.       | Suppose a relation $R = \{(3, 3), (5, 5), (5, 3), (5, 5), (6, 6)\}$ on $S = \{3, 5, 6\}$ . Here R is known as    |
| Option A: | equivalence relation                                                                                             |
| Option B: | reflexive relation                                                                                               |
| Option C: | symmetric relation                                                                                               |
| Option D: | transitive relation                                                                                              |
| 16.       | In system engineering which of the following methods bridges the gap between the two ends of system development? |
| Option A: | ASM method                                                                                                       |
| Option B: | VSM method                                                                                                       |
| Option C: | Factor method                                                                                                    |
| Option D: | FSM method                                                                                                       |
| 17.       | According to Moore circuit, the output of synchronous sequential circuit depend/s on of flip flop                |
| Option A: | Past state                                                                                                       |
| Option B: | Present state                                                                                                    |
| Option C: | Nest state                                                                                                       |
| Option D: | External inputs                                                                                                  |

| 18.       | How many binary relations are there on a set S with 9 distinct elements? |
|-----------|--------------------------------------------------------------------------|
| Option A: | $2^{90}$                                                                 |
| Option B: | $2^{100}$                                                                |
| Option C: | $2^{81}$                                                                 |
| Option D: | $2^{60}$                                                                 |
|           |                                                                          |
| 19.       | Simplify the expression using K-maps: $F(A,B,C) = \pi(0,2,4,5,7)$ .      |
| Option A: | (x+y)(y+z)(x+z)(x'+z')                                                   |
| Option B: | (x+z')(y+z)(x+y)                                                         |
| Option C: | (x+y'+z)(x+z')                                                           |
| Option D: | (y'+z')(x'+y)(z+y')                                                      |
|           |                                                                          |
| 20.       | In dynamic hazards multiple output transition can occur if               |
| Option A: | Circuit have single path with different delay                            |
| Option B: | Circuit have multiple path with different delay                          |
| Option C: | Circuit have multiple path with single delay                             |
| Option D: | Circuit have single path with single delay                               |

| Q2. | Solve any Two Questions out of Three 10 marks each                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A   | Design a 3 bit counter which counts in the following sequence using T flip flop. 0—1—3—4—5—7—0etc.                                                                                                                                                                                                                                                                                                                                                                             |
| В   | Find the fault table for all stuck-at faults of the following circuit. And prepare test generation using exclusive or method  X1                                                                                                                                                                                                                                                                                                                                               |
| С   | The set {a,b,c,d,e,f,g,h,i,j,k} has the partitions $\pi_1 = \{\overline{a,b,c}; \overline{d,e}; \overline{f}; \overline{g,h,i}; \overline{j,k}\}$ $\pi_2 = \{\overline{a,b}; \overline{c,g,h}; \overline{d,e,f}; \overline{i,j,k}\}$ $\pi_3 = \{\overline{a,b,c,f}; \overline{d,e,g,h,i,j,k}\}$ i) Find $\pi_1 + \pi_2$ and $\pi_1 \cdot \pi_2$ ii) Find $\pi_1 + \pi_3$ and $\pi_1 \cdot \pi_3$ iii) Find a partition that is greater than $\pi_1$ and smaller than $\pi_3$ . |

| Q3. | Solve any Two Questions out of Three 10 marks each                             |  |  |  |  |
|-----|--------------------------------------------------------------------------------|--|--|--|--|
| A   | Explain distinguishing and synchronizing sequence techniques.                  |  |  |  |  |
| В   | Find the homing sequence and synchronizing sequence for the following machine. |  |  |  |  |
|     | Present State Next State, Z                                                    |  |  |  |  |

|                                                   |                   |                           | X=0      | X=1 |  |
|---------------------------------------------------|-------------------|---------------------------|----------|-----|--|
|                                                   |                   | A                         | B,0      | D,0 |  |
|                                                   |                   | В                         | A,0      | В,0 |  |
|                                                   |                   | C                         | D,1      | A,0 |  |
|                                                   |                   | D                         | D,1      | C,0 |  |
|                                                   |                   |                           |          |     |  |
| Realize the Boolean function using Threshold gate |                   |                           |          |     |  |
| С                                                 | $\int f(w,x,y,z)$ | $(x) = \sum m(0,1,4,5,8,$ | 9,11,13) |     |  |

Examination 2020 under cluster \_\_ (Lead College: \_\_\_\_)
Examinations Commencing from 23<sup>rd</sup> December 2020 to 6<sup>th</sup> January 2021 and from 7<sup>th</sup> January 2021 to 20th January 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2016 Examination: TE, Semester: V

Course Code: ECCDLO 5013 and Course Name: Elective I: Finite Automata Theory

Max. Marks: 80 Time: 2 hour

| Question<br>Number | Correct Option (Enter either 'A' or 'B' or 'C' or 'D') |
|--------------------|--------------------------------------------------------|
| Q1.                | С                                                      |
| Q2.                | A                                                      |
| Q3.                | A                                                      |
| Q4                 | D                                                      |
| Q5                 | С                                                      |
| Q6                 | С                                                      |
| Q7                 | С                                                      |
| Q8.                | С                                                      |
| Q9.                | В                                                      |
| Q10.               | В                                                      |
| Q11.               | С                                                      |
| Q12.               | В                                                      |
| Q13.               | В                                                      |
| Q14.               | С                                                      |
| Q15.               | A                                                      |
| Q16.               | A                                                      |
| Q17.               | В                                                      |
| Q18.               | С                                                      |
| Q19.               | A                                                      |
| Q20.               | В                                                      |

Examinations Commencing from  $23^{rd}$  December 2020 to  $6^{th}$  January 2021 and from  $7^{th}$  January 2021 to  $20^{th}$  January 2021

Program: BE ELECTRONICS & TELECOMMUNICATION ENGINEERING

Curriculum Scheme: Rev 2016 Examination: TE Semester V

Course Code: ECCDLO5014 and Course Name: DATA COMPRESSION & ENCRYPTION Time: 2 hour Max. Marks: 80

| Q1.       | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks. |
|-----------|------------------------------------------------------------------------------------------------------------|
|           |                                                                                                            |
| 1.        | AES has different configurations.                                                                          |
| Option A: | Two                                                                                                        |
| Option B: | Three                                                                                                      |
| Option C: | Four                                                                                                       |
| Option D: | Five                                                                                                       |
|           |                                                                                                            |
| 2.        | SHA-1 produces a hash value of                                                                             |
| Option A: | 256 bits                                                                                                   |
| Option B: | 160 bits                                                                                                   |
| Option C: | 180 bits                                                                                                   |
| Option D: | 128 bits                                                                                                   |
|           |                                                                                                            |
| 3.        | Use Caesar's Cipher to decipher the following:                                                             |
|           | HQFUBSWHG WHAW                                                                                             |
| Option A: | ABANDONED TEXT                                                                                             |
| Option B: | ENCRYPTED LOCK                                                                                             |
| Option C: | ABANDONED LOCK                                                                                             |
| Option D: | ENCRYPTED TEXT                                                                                             |
|           |                                                                                                            |
| 4.        | Moving Picture Experts Group (MPEG-2), was designed for high-quality DVD                                   |
|           | with a data rate of                                                                                        |
| Option A: | 3 to 6 Mbps                                                                                                |
| Option B: | 4 to 6 Mbps                                                                                                |
| Option C: | 5 to 6 Mbps                                                                                                |
| Option D: | 6 to 8 Mbps                                                                                                |
|           |                                                                                                            |
| 5.        | Steps in jpeg are in following order                                                                       |
| Option A: | DCT, quantization, data compression                                                                        |
| Option B: | DCT, data compression, quantization                                                                        |
| Option C: | quantization, DCT, data compression                                                                        |
| Option D: | data compression ,DCT, quantization                                                                        |
|           |                                                                                                            |
| 6.        | In Huffman coding, data in a tree always occurs?                                                           |
| Option A: | Roots                                                                                                      |
| Option B: | Leaves                                                                                                     |
| Option C: | Outside the tree                                                                                           |

| Ontion D. | right out troo                                                             |
|-----------|----------------------------------------------------------------------------|
| Option D: | right sub tree                                                             |
| 7.        | SET stands for                                                             |
| Option A: | Secure email transaction                                                   |
| Option B: | Secure electronic transmission                                             |
| Option C: | Safe email transaction                                                     |
| Option C: | Secure electronic transaction                                              |
| <u> </u>  | Secure electronic transaction                                              |
| 8.        | Which protocol is used to convey SSL related alerts to the peer entity?    |
| Option A: | Alert Protocol                                                             |
| Option B: | Handshake Protocol                                                         |
| Option C: | Upper-Layer Protocol                                                       |
| Option D: | Change Cipher Spec Protocol                                                |
| opuon 2.  | Change Capital Spee 11000 Co.                                              |
| 9.        | What is the key size allowed in PGP?                                       |
| Option A: | 1024-1056                                                                  |
| Option B: | 1024-4056                                                                  |
| Option C: | 1024-4096                                                                  |
| Option D: | 1024-2048                                                                  |
|           |                                                                            |
| 10.       | Prob a1= 0.2, prob a2=0.2, prob a3=0.25, prob a4=0.05, prob a5=0.15, prob  |
|           | a6=0.15. Find entropy.                                                     |
| Option A: | 3                                                                          |
| Option B: | 3.25                                                                       |
| Option C: | 2                                                                          |
| Option D: | 2.25                                                                       |
|           |                                                                            |
| 11.       | Compression ratio is                                                       |
| Option A: | Uncompressed size /compressed size                                         |
| Option B: | compressed size/ Uncompressed size                                         |
| Option C: | compression gain/compression factor                                        |
| Option D: | compression factor/ compression gain                                       |
|           |                                                                            |
| 12.       | encoding is based on the science of psychoacoustics, which is the          |
|           | study of how people perceive sound.                                        |
| Option A: | Predictive                                                                 |
| Option B: | Perceptual                                                                 |
| Option C: | Huffman coding                                                             |
| Option D: | Arithmetic coding                                                          |
| 12        | An agrummatria Iray ainh ara yasa                                          |
| Ontion A: | An asymmetric-key ciphers uses                                             |
| Option A: | 1 key                                                                      |
| Option B: | 2 key                                                                      |
| Option C: | 3 key                                                                      |
| Option D: | 4 key                                                                      |
| 14.       | audio/video refers to an demand requests for compressed audio/video        |
| 14.       | audio/video refers to on-demand requests for compressed audio/video files. |
| Option A: | Streaming live                                                             |
| Option B: | Streaming five Streaming stored                                            |
| Option D. | Sucanning Stored                                                           |

| Option C: | Interactive                                                                       |
|-----------|-----------------------------------------------------------------------------------|
| Option D: | Streaming stored and Interactive                                                  |
| opvion 2. | Stemming stores and interest to                                                   |
| 15.       | A video consists of a sequence of                                                 |
| Option A: | Slots                                                                             |
| Option B: | Signals                                                                           |
| Option C: | Packets                                                                           |
| Option D: | Frames                                                                            |
|           |                                                                                   |
| 16.       | The basic processing unit of H.261 design is called a                             |
| Option A: | Block                                                                             |
| Option B: | Megablock                                                                         |
| Option C: | Macroblock                                                                        |
| Option D: | Microblock                                                                        |
|           |                                                                                   |
| 17.       | There aretypes of redundancies in an audio file.                                  |
| Option A: | 5                                                                                 |
| Option B: | 4                                                                                 |
| Option C: | 3                                                                                 |
| Option D: | 2                                                                                 |
|           |                                                                                   |
| 18.       | Human ears can hear sound waves when the frequency lies between                   |
| Option A: | 2Hz to 20kHz                                                                      |
| Option B: | 20Hz to 2MHz                                                                      |
| Option C: | 20Hz to 20KHz                                                                     |
| Option D: | 0.2Hz to 2KHz                                                                     |
|           |                                                                                   |
| 19.       | SHA has rounds.                                                                   |
| Option A: | 18                                                                                |
| Option B: | 14                                                                                |
| Option C: | 20                                                                                |
| Option D: | 22                                                                                |
| 20        |                                                                                   |
| 20.       | Choosing a discrete value that is near but not exactly at the analog signal level |
| Onting A  | leads to                                                                          |
| Option A: | PCM error                                                                         |
| Option B: | Quantization error                                                                |
| Option C: | PAM error                                                                         |
| Option D: | PWM error                                                                         |

| Q2  |                                                               |               |
|-----|---------------------------------------------------------------|---------------|
| A   | Attempt any 2                                                 | 05 marks each |
| i   | Explain JPEG- LS standard.                                    |               |
| ii  | Explain in brief a network based intrusion detection system.  |               |
| iii | Write a short note on secure/multiple internet mail extension | n             |

| В  | Attempt Any 1 10 marks each                                                                                                                                              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i  | Encrypt the plain text 15 using the RSA algorithm which uses prime numbers p=7 and q=11. The public key e =13. Verify that the decrypted text is the same as plain text. |
| ii | Explain the working of Data Encryption Standard with the help of a block diagram.                                                                                        |

| Q3  |                                                                                                                                                           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| A   | Attempt any 2 05 marks each                                                                                                                               |
| i   | Explain the different security goals.                                                                                                                     |
| ii  | Illustrate the worst case scenario in LZ-77 dictionary compression technique.                                                                             |
| iii | Explain Fermat's Little theorem and Euler theorem with an example.                                                                                        |
| В   | Attempt any 1 10 marks each                                                                                                                               |
| i   | A source $A = \{a, b, c, d\}$ has probabilities $(0.7, 0.15, 0.1, 0.05)$ respectively. Generate a tag for the sequence $\{abcda\}$ using arithmetic code. |
| ii  | Explain LZ-77 approach of data compression with an example and explain the problem with LZ77 technique.                                                   |

Examinations Commencing from  $23^{rd}$  December 2020 to  $6^{th}$  January 2021 and from  $7^{th}$  January 2021 to  $20^{th}$  January 2021

#### Program: BE ELECTRONICS & TELECOMMUNICATION ENGINEERING

Curriculum Scheme: Rev 2016 Examination: TE Semester V

Course Code: ECCDLO 5014 and Course Name: DATA COMPRESSION & ENCRYPTION Time: 2 hour Max. Marks: 80

\_\_\_\_\_

| Question<br>Number | Correct Option (Enter either 'A' or 'B' or 'C' or 'D') |
|--------------------|--------------------------------------------------------|
| Q1.                | В                                                      |
| Q2.                | В                                                      |
| Q3.                | D                                                      |
| Q4                 | A                                                      |
| Q5                 | A                                                      |
| Q6                 | В                                                      |
| Q7                 | D                                                      |
| Q8.                | A                                                      |
| Q9.                | С                                                      |
| Q10.               | В                                                      |
| Q11.               | A                                                      |
| Q12.               | В                                                      |
| Q13.               | В                                                      |
| Q14.               | A                                                      |
| Q15.               | D                                                      |
| Q16.               | С                                                      |
| Q17.               | D                                                      |
| Q18.               | С                                                      |
| Q19.               | С                                                      |
| Q20.               | В                                                      |