K. J. Somaiya Institute of Engineering and Information Technology

Sion, Mumbai - 400022
NAAC Accredited Institute with 'A' Grade NBA Accredited 3 Programs
(Computer Engineering, Electronics \& Telecommunication Engineering and Electronics Engineering)
Permanently Affiliated to University of Mumbai

EXAMINATION TIME TABLE (JANUARY 2021)

PROGRAMME - S.E. (Electronics \& Telecommunication) (REV. -2012) (CBSGS) SEMESTER - III

Days and Dates	Time	Course Code	Paper

08 January 2021	12:30 p.m. to 02:30 p.m.	ETS301	APPLIED MATHEMATICS-III
11 January 2021	$12: 30$ p.m. to 02:30 p.m.	ETS302	ANALOG ELECTRONICS - I
13 January 2021	$12: 30$ p.m. to 02:30 p.m.	ETS303	DIGITAL ELECTRONICS
15 January 2021	$12: 30$ p.m. to 02:30 p.m.	ETS304	CIRCUITS AND TRANSMISSION LINES
18 January 2021	$12: 30$ p.m. to 02:30 p.m.	ETS305	 MEASUREMENTS

Important Note: • Change if any, in the time table shall be communicated on the college web site.

Mumbai
20th December, 2020.

Principal

University of Mumbai

Examination 2020 under cluster _ (Lead College: \qquad)

Program: SE Electronics and Telecommunication Engineering
Curriculum Scheme: Rev 2012 (CBSGS)
Examination: Second Year/ Semester III Course Code: ETS301, Course Name: AM-III

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	If $\varphi=x^{2}+y^{2}+z^{2}$, find $\nabla \varphi$.
Option A:	$\frac{-2 \bar{r}}{r^{2}}$
Option B:	$\frac{\bar{r}}{r^{2}}$
Option C:	$2 \bar{r}$
Option D:	$-2 \bar{r}$
2.	Find ' p ' if $f(z)=r^{2} \cos 3 \theta+i r^{2} \sin p \theta$ is analytic.
Option A:	3
Option B:	2
Option C:	4
Option D:	-2
3.	Find the value of a_{n} for $f(x)=2$ in the interval $(-2,2)$.
Option A:	$\frac{4(-1)^{n}}{4-n^{2} \pi^{2}} \cosh 2$
Option B:	$\frac{4(-1)^{n}}{4+n^{2} \pi^{2}} \cosh 2$
Option C:	$\frac{4(-1)^{n}}{4-n^{2} \pi^{2}} \sinh 2$
Option D:	0

4.	Find $L^{-1}\left[\tan ^{-1}(s)\right]$
Option A:	$\frac{-\sin t}{t}$
Option B:	$-\frac{e^{-4 t} \cosh t}{t}$
Option C:	$\frac{e^{-4 t} \sin t}{t}$
Option D:	$\frac{\sin t}{t}$
5.	The value of $J_{1 / 2}(x)$ is
Option A:	$\sqrt{\frac{2}{\pi x}} \cdot \cos x$
Option B:	$-\sqrt{\frac{2}{\pi x}} \cdot \cos x$
Option C:	$\sqrt{\frac{2}{\pi x}} \cdot \sin x$
Option D:	$-\sqrt{\frac{2}{\pi x}} \cdot \cos x$
6.	Find the fixed points of the bilinear transformation of $w=\frac{2 z+6}{z+7}$
Option A:	1,-6
Option B:	-1,6
Option C:	-1,-2
Option D:	1,-2
7.	Find the maximum directional derivative of $\varphi=(4 x-y+2 z)^{2}$ at $(1,2,1)$.
Option A:	$\sqrt{21}$

Option B:	$8 \sqrt{21}$
Option C:	$-8 \sqrt{21}$
Option D:	$-\sqrt{21}$
8.	Find $L\left[e^{-2 t} \sin 3 t\right]$.
Option A:	$\frac{3}{\left(s^{2}+4 s+13\right)}$
Option B:	$\frac{3}{\left(s^{2}-4 s+13\right)}$
Option C:	$\frac{3}{\left(s^{2}+4 s-13\right)}$
Option D:	$\frac{3}{\left(s^{2}+4 s-9\right)}$
9.	If \bar{a} is a constant vector find $\operatorname{div}(\bar{a})$
Option A:	0
Option B:	constant
Option C:	1
Option D:	\bar{a}
10.	Write the formula for c_{n} in the complex form of the Fourier Series of $f(x)$ in the interval $(0,2 \pi)$
Option A:	$C_{n}=\frac{1}{\pi} \int_{0}^{\pi} f(x) e^{-i n x} d x$
Option B:	$C_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{i n x} d x$
Option C:	$C_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} d x$

Option D:	$C_{n}=\frac{1}{2 \pi} \int_{0}^{\pi} f(x) e^{-i n x} d x$
11.	Find $L[t \cosh t]$
Option A:	$\frac{s^{2}+1}{\left(s^{2}-1\right)^{2}}$
Option B:	$\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}$
Option C:	$\frac{1}{\left(s^{2}-1\right)^{2}}$
Option D:	$\frac{s^{2}}{\left(s^{2}-1\right)^{2}}$
12.	Which one of the following function is Harmonic Function?
Option A:	$u=y^{3}+3 x^{2} y$
Option B:	$u=y^{3}-3 x^{2} y$
Option C:	$u=y^{3}-x^{2} y$
Option D:	$u=y^{3}-3 x^{2}$
13.	Use Stoke's theorem to equate $\int_{C} \bar{F} \cdot d \bar{r}$ is
Option A:	$\iint_{S} \bar{N} \times(\nabla \times \bar{F}) d s$
Option B:	$\iint_{S} \bar{N} \cdot \bar{F} d s$
Option C:	$\iint_{S} \bar{N} \cdot(\nabla \times \bar{F}) d s$
Option D:	$\iint_{S} \bar{N}(\nabla \cdot \bar{F}) d s$
14.	If $f(t)=\frac{\sin t}{t}$ then find $L\left[f^{\prime}(t)\right]$.

Option A:	$S . \cot ^{-1} s+1$
Option B:	$S . \cot ^{-1} s-1$
Option C:	$\cot ^{-1} s-1$
Option D:	$\cot ^{-1} s+1$
15.	The value of $J_{0}{ }^{\prime}(x)$ is
Option A:	$J_{1}(x)$
Option B:	0
Option C:	$-J_{1}(x)$
Option D:	$-J_{1}(x)$
16.	Find Laplace Transform of $e^{3 t} H(t-2)$.
Option A:	$e^{2(s+3)} \cdot \frac{1}{s+3}$
Option B:	$e^{-2(s-3)} \cdot \frac{1}{s-3}$
Option C:	$e^{2(s-3)} \cdot \frac{1}{s-3}$
Option D:	$e^{-2(s+3)} \cdot \frac{1}{s+3}$
17.	Define Fourier Cosine Integral in the interval ($-\infty, \infty$)
Option A:	$f(x)=\frac{2}{\pi} \int_{0}^{\infty} \cos \omega x \int_{0}^{\infty} f(s) \cos \omega s d \omega d s$
Option B:	$f(x)=\frac{2}{\pi} \int_{0}^{\infty} \sin \omega x \int_{0}^{\infty} f(s) \cos \omega s d \omega d s$
Option C:	$f(x)=\frac{2}{\pi} \int_{0}^{\infty} \cos \omega x \int_{0}^{\infty} f(s) \sin \omega s d \omega d s$
Option D:	$f(x)=\frac{2}{\pi} \int_{0}^{\infty} \sin \omega x \int_{0}^{\infty} f(s) \sin \omega s d \omega d s$

18.	If $\operatorname{curl} \bar{F}=\overline{0}$ then the field \bar{F} is
Option A:	Irrotational
Option B:	Orthogonal
Option C:	Solenoidal
Option D:	Scalar Potential
19.	Compute the constant ' a ' if $f(z)=\left(x^{2}+2 a x y-y^{2}\right)+i\left(-x^{2}+2 x y+y^{2}\right)$ is analytic.
Option A:	2
Option B:	-1
Option C:	1
Option D:	-2
20.	Find the value of b_{n} for $f(x)=2 x^{2}$ in the interval $(-2,2)$.
Option A:	$\frac{\pi(-1)^{n}}{2}$
Option B:	0
Option C:	$\frac{\pi(-1)^{n+1}}{4}$
Option D:	$\frac{\pi(-1)^{n-1}}{2}$

Q2. (20 Marks)	Solve any Four out of Six 5 marks each
A	Evaluate $\int_{\mathrm{O}}^{\infty} e^{-3 t} t^{5} d \boldsymbol{t}$
B	Solve $\frac{d^{2} y}{d t^{2}}+9 y=1$ given that $\mathrm{y}(0)=0, \mathrm{y}^{\prime}(0)=0$.
C	Find the Fourier Series of $f(x)=2 x,(-\pi, \pi)$.

D	Prove that $J_{5 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cdot\left\{\frac{3-x^{2}}{x^{2}} \sin x-\frac{3}{x} \cos x\right\}$.
E	Show that the vector $\bar{F}=\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k$ is irrotational and hence, find its scalar potential.
F	Find the orthogonal trajectory of the family of curves given by $2 \mathrm{x}-\mathrm{x}^{3}+3 \mathrm{xy}^{2}=\mathrm{a}$.

Q3. (20 Marks)	Solve any Four out of Six 5 marks each
A	Using Convolution Theorem, find Inverse Laplace transforms of $\frac{1}{(s-2)(s+2)^{2}}$.
B	Find Complex form of Fourier Series for $f(x)=e^{-x}$ in the interval ($-1,1$).
C	Determine the constants a,b,c if $\bar{F}=(x+2 y+a z) i+(b x-3 y-z) j+(4 x+c y+2 z) k$ is irrotational.
D	Evaluate by Green's Theorem $\int_{C} \bar{F} \cdot d \bar{r}$ where $\bar{F}=\left(x y+y^{2}\right) i+x^{2} j, \mathrm{C}$ is the closed curve of the region bounded by $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=\mathrm{x}^{2}$.
E	Find the Bilinear Transformation which maps the points $\mathrm{z}=\infty, \mathrm{i}, 0$ onto the points $\mathrm{w}=0, \mathrm{i}, \infty$.
F	Verify Laplace's Equation for $u=\left(r+\frac{a^{2}}{r}\right) \cos \theta$. Also find v.

University of Mumbai

Examination 2020 under cluster _ (Lead College: \qquad)

Program: SE Electronics and Telecommunication Engineering
Curriculum Scheme: Rev 2012 (CBSGS)
Examination: Second Year/ Semester III
Course Code: ETS301, Course Name: AM-III

Time: 2 hour

Question Number	Correct Option Enter either 'A' or ' \mathbf{B} ' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	C
Q2.	A
Q3.	D
Q4	A
Q5	C
Q6	A
Q7	B
Q8.	A
Q9.	A
Q10.	C
Q11.	B
Q12.	C
Q13.	B
Q14.	C
Q15.	B
Q16.	A
Q17.	A
Q18.	C
Q19.	B
Q20.	

University of Mumbai

Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to 6 $^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to 20 ${ }^{\text {th }}$ January 2021

Program: Electronics \& Telecommunication
Curriculum Scheme: Rev 2012
Examination: SE Semester III
Course Code: ETC302 and Course Name: Analog Electronics-I

Time: 2 Hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Calculate the forward bias current of a Si diode when forward bias voltage of 0.4 V is applied, the reverse saturation current is $1.5 \times 10^{-9} \mathrm{~A}$, ideality factor is 1 and the thermal voltage is 26 mV .
Option A:	7.2 mA
Option B:	12.4 mA
Option C:	1.256 mA
Option D:	5.689 mA
2.	A MOSFET is sometimes called JFET.
Option A:	Many gate
Option B:	Open gate
Option C:	Insulated gate
Option D:	Shorted gate
3.	For the dc analysis the network can be isolated from the indicated ac levels by replacing the capacitor with \qquad
Option A:	an open circuit equivalent
Option B:	a short circuit equivalent
Option C:	a source voltage
Option D:	A source current
4.	Varactor diode is a semiconductor diode in which the \qquad can be varied as a function of reverse voltage of the diode.
Option A:	Junction resistance
Option B:	Junction conductance
Option C:	Junction inductance
Option D:	Junction capacitance
5.	In a small signal equivalent model of an FET, what does $\mathrm{g}_{\mathrm{m}} \mathrm{V}_{\mathrm{GS}}$ stand for?
Option A:	A pure resistor
Option B:	Voltage controlled current source
Option C:	Current controlled current source
Option D:	Voltage controlled voltage source

6.	What type of diode circuit is used to clip off portions of signal voltages above or below certain levels?
Option A:	Clamper
Option B:	Clipper
Option C:	IC voltage regulator
Option D:	Comparator
7.	For a CE amplifier with voltage divider biasing with bypassed $\mathrm{R}_{\mathrm{E}}, \mathrm{R}_{1}=40 \mathrm{k} \Omega, \mathrm{R}_{2}$ $=10 \mathrm{k} \Omega, \mathrm{r}_{\pi}=1.15 \mathrm{k} \Omega$ the input impedance of the amplifier using the hybrid pi model is \qquad .
Option A:	$1.005 \mathrm{k} \Omega$
Option B:	$9.15 \mathrm{k} \Omega$
Option C:	$5.15 \mathrm{k} \Omega$
Option D:	$8.25 \mathrm{k} \Omega$
8.	Frequency of oscillation of a Wein bridge oscillator is given by
Option A:	1/6 6 RC
Option B:	$1 / 2 \pi \mathrm{RC}$
Option C:	$2 \pi \mathrm{RC}$
Option D:	1/RC
9.	For base bias with emitter feedback if the value of $\mathrm{R}_{\mathrm{B}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=2 \mathrm{k} \Omega$ and $\beta=$ 100 , the value of stability factor is \qquad .
Option A:	5.72
Option B:	2.94
Option C:	9.83
Option D:	0
10.	A transistor with $\beta=120$ is biased to operate at a dc collector current of 1.2 mA . Find the value of gm .
Option A:	$12 \mathrm{~mA} / \mathrm{V}$
Option B:	$24 \mathrm{~mA} / \mathrm{V}$
Option C:	$36 \mathrm{~mA} / \mathrm{V}$
Option D:	$48 \mathrm{~mA} / \mathrm{V}$
11.	What is the typical value for the input impedance Zi for JFETs?
Option A:	$100 \mathrm{k} \Omega$
Option B:	$1 \mathrm{M} \Omega$
Option C:	$10 \mathrm{M} \Omega$
Option D:	$1000 \mathrm{M} \Omega$
12.	The ___ controls the ___ of an FET.
Option A:	ID, VGS
Option B:	VGS, ID
Option C:	IG, VDS
Option D:	IG, ID
13.	Calculate the frequency of Colpitts oscillator if $\mathrm{C}_{1}=1 \mathrm{nF}, \mathrm{C}_{2}=15 \mathrm{nF}$ and $\mathrm{L}=27$ $\mu \mathrm{H}$.

Option A:	1 MHz
Option B:	31.63 kHz
Option C:	1 GHz
Option D:	1 kHz
14.	The emitter-follower configuration has a \qquad impedance at the input and a \qquad impedance at the output.
Option A:	low, low
Option B:	low, high
Option C:	high, low
Option D:	high, high
15.	Which of the following is expected to have highest input impedance?
Option A:	MOSFET
Option B:	JFET amplifier
Option C:	CE bipolar transistor
Option D:	Common collector bipolar transistor
16.	is a fixed frequency oscillator.
Option A:	Phase shift oscillator
Option B:	Hartley oscillator
Option C:	Colpitts oscillator
Option D:	Crystal oscillator
17.	Which FET amplifier has a phase inversion between input and output signals?
Option A:	Common gate
Option B:	Common source
Option C:	Common drain
Option D:	Source follower
18.	What is trans-conductance?
Option A:	Ratio of change in drain current to change in collector current
Option B:	Ratio of change in drain current to change in gate to source voltage
Option C:	Ratio of change in collector current to change in drain current
Option D:	Ratio of change in collector current to change in gate to source voltage
19.	Find the maximum value of gm for FET with $\mathrm{I}_{\text {DSS }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{P}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-5 \mathrm{~V}$?
Option A:	10 mS
Option B:	20 mS
Option C:	1 mS
Option D:	0 mS
20.	Determine the value of transconductance for N -channel JFET with $\mathrm{I}_{\mathrm{DSS}}=9 \mathrm{~mA}$, $\mathrm{V}_{\mathrm{P}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-1 \mathrm{~V}$.
Option A:	7.5 mS
Option B:	6.5 mS
Option C:	5.5 mS
Option D:	4.5 mS

A Explain the basic operation and characteristics of n-channel enhancement type MOSFET. B Derive the equations for voltage gain, input impedance and output impedance for a NPN transistor in CE mode voltage divider bias configuration with R_{E} unbypassed.
For the amplifier shown below determine the Q point

| Q3 | Solve any Two Questions out of Three |
| :--- | :--- | :--- |
| | Determine the output waveform V_{0} for the circuit shown below if
 a) $\mathrm{V}_{\mathrm{r}}=0 \mathrm{~V}$
 b) $\mathrm{V}_{\mathrm{r}}=0.7 \mathrm{~V}$
 Where V_{r} is the diode cut in voltage |
| B | Draw a neat circuit diagram of Phase Shift Oscillator and derive an expression for its output
 frequency. |
| C | Derive expression for voltage gain, input impedance and output impedance for a source
 follower circuit using n - channel MOSFET. |

University of Mumbai

Examination 2020 under cluster 5 (Lead College: APSIT)
Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to 20 ${ }^{\text {th }}$ January 2021
Program: Electronics \& Telecommunication
Curriculum Scheme: Rev 2012
Examination: SE Semester III
Course Code: ETC302 and Course Name: Analog Electronics-I
Time: 2 Hour
Max. Marks: 80

Question Number	Correct Option
Q1.	A
Q2.	C
Q3.	A
Q4	D
Q5	B
Q6	B
Q7	A
Q8.	B
Q9.	A
Q10.	D
Q11.	D
Q12.	B
Q13.	C
Q14.	A
Q15.	D
Q16.	B
Q17.	B
Q18.	A
Q19.	D
Q20.	

University of Mumbai

Examination 2020 under cluster 5(Lead College: APSIT)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to 20 ${ }^{\text {th }}$ January 2021
Program:Electronics \& Telecommunication Engineering Curriculum Scheme: Rev2012
Examination: SESemesterIII
Course Code: ETC303and Course Name:Digital Electronics
Time: 2 Hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	What will be the result in BCD form if two binary numbers 599 and 984 are added?
Option A:	8513
Option B:	1583
Option C:	8421
Option D:	1234
2.	The advantage of TTL with totem-pole output as compared to other TTL types are
Option A:	Higher fan in and higher fan out
Option B:	low power dissipation and Fast switching
Option C:	Low cost and high noise margin
Option D:	Slow switching and high power dissipation
3.	Which of the following correctly describes the distributive law?
Option A:	$(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})=\mathrm{AB}+\mathrm{CD}$
Option B:	$(\mathrm{A}+\mathrm{B}) \cdot \mathrm{C}=\mathrm{AC}+\mathrm{BC}$
Option C:	$(\mathrm{AB})(\mathrm{A}+\mathrm{B})=\mathrm{AB}$
Option D:	(A.B)C=AC.AB
4.	Each group of adjacent Minterms corresponds to a possible product term of the given
Option A:	Function
Option B:	Value
Option C:	Set
Option D:	Word
5.	Which of the following flip flop is used as latch?
Option A:	J-K flip flop
Option B:	Master slave J-K flip flop
Option C:	D flip flop
Option D:	T flip flop
6.	Race condition occurs in
Option A:	Synchronous circuit

Option B:	Asynchronous circuit
Option C:	Combinational circuit
Option D:	All of the digital circuit
7.	Flash memory is a non-volatile storage device in which data
Option A:	Can be erased physically
Option B:	Can be erased magnetically
Option C:	Can be erased electrically
Option D:	Cannot be erased
8.	Which mechanism allocates the binary value to the states in order to reduce the cost of the combinational circuits?
Option A:	State Reduction
Option B:	State Minimization
Option C:	State Assignment
Option D:	State Evaluation
9.	Two states are said to be equal if they have the same
Option A:	Inputs
Option B:	Next state
Option C:	Output
Option D:	Mid state
10.	What is the principal advantage of using address multiplexing with DRAM memory?
Option A:	reduced pin count and decrease in package size
Option B:	reduced memory access time
Option C:	reduced requirement for constant refreshing of the memory contents
Option D:	It eliminates the requirement for a chip-select input line, thereby reducing the pin count.
11.	Demultiplexers facilitate which type of conversion?
Option A:	Decimal-to-hexadecimal
Option B:	Single input, multiple outputs
Option C:	AC to DC
Option D:	Odd parity to even parity
12.	When performing subtraction by addition in the 2's-complement system
Option A:	The minuend and the subtrahend are both changed to the 2's-complement
Option B:	The minuend is changed to 2 's-complement and the subtrahend is left in its original form
Option C:	The minuend is left in its original form and the subtrahend is changed to its 2's-complement
Option D:	The minuend and subtrahend are both left in their original form.
13.	PROMs are available in
Option A:	Bipolar and MOSFET technologies
Option B:	MOSFET and FET technologies
Option C:	FET and bipolar technologies
Option D:	MOS and bipolar technologies

14.	A Karnaugh map (K-map) is an abstract form of \qquad diagram organized as a matrix of squares.
Option A:	Cycle Diagram
Option B:	Block diagram
Option C:	Triangular Diagram
Option D:	Venn Diagram
15.	How many full adders are required to construct an m-bit parallel adder?
Option A:	$\mathrm{m} / 2$
Option B:	M
Option C:	m-1
Option D:	M+1
16.	What is the difference between a shift-right register and a shift-left register?
Option A:	There is no difference
Option B:	The direction of the shift
Option C:	Propagation delay
Option D:	The clock input
17.	In PLD, there are provisions to perform interconnections of the gates internally, because of
Option A:	High reliability
Option B:	High conductivity
Option C:	The desired logic implementation
Option D:	The desired output
18.	Which of the following is similar to the entity declaration in structural modeling in VHDL?
Option A:	Component instantiation
Option B:	Component declaration
Option C:	Port map
Option D:	Generic map
19.	Which of the following sequential statements can't be used in a function?
Option A:	WAIT
Option B:	IF
Option C:	CASE
Option D:	LOOP
20.	FPGA devices are
Option A:	PLD type
Option B:	EPROM type
Option C:	SROM
Option D:	SLD

Q2 (20 Marks Each)	Solve any Four out of Six 5 marks each
A	Design and implement 4-bit look ahead carry adder.
B	Design and implement BCD to Excess-3 code converter.
C	Explain XC4000 FPGA architecture block diagram.
D	Write VHDL code for Full Adder.
E	Explain interfacing between CMOS and TTL.
F	Write a short note on PAL and PLA.

Q3. (20 Marks Each)	Solve any Two Questions out of Three 10 marks each
A	Write the difference between Moore and Mealy models with necessary block diagrams.
B	What is the significance of Edge triggering? Explain the working of positive edge triggered D flip-flop with their function table.
C	Implement the following Boolean function using 8:1 multiplexer: $\mathrm{Y}=\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{D}}+\mathrm{ACD}+\mathrm{BCD}+\overline{\mathrm{A}} \overline{\mathrm{C}} \mathrm{D}$

University of Mumbai

Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Electronics \& Telecommunication Engineering
Curriculum Scheme: Rev2012
Examination: SE Semester III
Course Code: ETC303 and Course Name: Digital Electronics
Time: 2 hour
Max. Marks: 80

Question Number	Correct Option (Enter either ' \mathbf{A}^{\prime} or ' \mathbf{B} or ' \mathbf{C}^{\prime} ' or 'D')
Q1.	B
Q2.	B
Q3.	B
Q4	A
Q5	C
Q6	B
Q7	C
Q8.	C
Q9.	C
Q10.	A
Q11.	C
Q12.	D
Q13.	D
Q14.	C
Q15.	B
Q16.	C
Q17.	B
Q18.	A
Q19.	A
Q20.	

University of Mumbai

Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to 20 ${ }^{\text {th }}$ January 2021
Program: Electronics and Telecommunication Engineering
Curriculum Scheme: Rev-2012
Examination: SE Semester III
Course Code: ETC304 and Course Name: Circuit and Transmission Lines
Time: 2 Hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Dependent voltage source must be ----------- while analyzing network using superposition theorem.
Option A:	Open circuited
Option B:	Short circuited
Option C:	Replaced by its equivalent resistor
Option D:	Active
2.	A network consist of dependent current source with value $5 \mathrm{~V}_{\mathrm{x}}$. Which type of dependent source it is?
Option A:	Voltage Controlled Current Source
Option B:	Current Controlled Current Source
Option C:	Voltage Controlled Voltage Source
Option D:	Current Controlled Voltage Source
3.	Dot convention in inductively coupled coils is used to -------.
Option A:	Determine power delivered to the other coil
Option B:	Determine turning ratio of two coils
Option C:	Determine polarities of induced E.M. F.
Option D:	Identify types of dependent source to be introduced
4.	Value of load resistor must be equal to \qquad to delivered maximum power to the load
Option A:	$\left(\mathrm{I}_{\text {SC }}\right)^{2} \times \mathrm{R}_{\text {TH }}$
Option B:	Thevenin's equivalent resistor ($\mathrm{R}_{\text {TH }}$)
Option C:	$\mathrm{V}_{\mathrm{TH}} / \mathrm{R}_{\mathrm{TH}}$
Option D:	$\mathrm{V}_{\mathrm{TH}} / 2 \mathrm{xR}_{\text {TH }}$
5.	If the voltage across capacitor (C) is $\mathrm{Vc}(\mathrm{t})$, then current in capacitor ic (t) is given by \qquad
Option A:	$\mathrm{ic}(\mathrm{t})=\frac{1}{C} \int_{-\infty}^{t} V c(t) \cdot d t$
Option B:	$\mathrm{ic}(\mathrm{t})=\mathrm{Vc}(\mathrm{t}) / \mathrm{C}$
Option C:	$\mathrm{ic}(\mathrm{t})=\mathrm{Vc}(\mathrm{t})+\mathrm{Vc}\left(0^{-}\right)$
Option D:	$\mathrm{ic}(\mathrm{t})=\mathrm{C} \frac{d V c(t)}{d t}$

6.	If $u(t)$ signal is applied to the $\mathrm{R}-\mathrm{C}$ network where $\mathrm{R}=1000$ ohm and $\mathrm{C}=1 \mathrm{uF}$ connected in series. Determine time constant (τ) of a given network.
Option A:	10 mSec
Option B:	0.1 mSec
Option C:	1 mSec
Option D:	5 mSec
7.	For R-L network with zero initial conditions $\left(\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=0\right)$, at $\mathrm{t}=0^{+}$, inductor behaves as ---
Option A:	Voltage source
Option B:	Produces non-zero current
Option C:	Short circuit
Option D:	Open circuit
8.	Laplace transform of unit step function starting at $\mathrm{t}=\mathrm{a}$ is ------
Option A:	$\frac{e^{-a t}}{s}$
Option B:	$\frac{1}{s}$
Option C:	$\frac{a}{s}$
Option D:	$\frac{a}{s^{2}}$
9.	Voltage source with function $u(t)$ is applied to series connected R and C network. Equation of voltage across capacitor is \qquad
Option A:	$\mathrm{u}(\mathrm{t})$
Option B:	$\left(1-{ }^{-e^{t}}\right) \mathrm{u}(\mathrm{t})$
Option C:	$\left(1-{ }^{\text {ac }}\right.$) $\mathrm{u}(\mathrm{t})$
Option D:	$e^{-\frac{t}{R C}} \mathrm{u}(\mathrm{t})$
10.	The number of roots of $\mathrm{P}(\mathrm{S})=\mathrm{S}^{2}+8 \mathrm{~S}+15$ in left half of the S-plane are ----
Option A:	One
Option B:	Two
Option C:	Three
Option D:	Zero
11.	Driving point impedance function $\mathrm{Z}(\mathrm{S})=\frac{7}{S+2}$ is ----
Option A:	Series combination of two resistors
Option B:	Parallel combination of Resistor and inductor
Option C:	Parallel combination of resistor and Capacitor
Option D:	Series combination of two inductors
12.	Function $\mathrm{F}(\mathrm{S})=\frac{4(S+3)}{(S+2)(S-4)}$ is not positive real function, because ------
Option A:	All poles lie in left half of the S-Plane
Option B:	All zeros lie in left half of the S-Plane
Option C:	Poles and zeros are not interlaced
Option D:	One of the pole is right half of S-Plane

13.	Realization of RC impedance function using Cauer-I can be obtained by -----
Option A:	Partial fraction expansion
Option B:	$2^{\text {nd }}$ order Non-homogeneous equation
Option C:	Removal of pole from impedance function at origin
Option D:	Continued fraction expansion about pole at infinity
14.	Which of the following is valid equations of transmission parameters?
Option A:	$\mathrm{V}_{1}=\mathrm{T}_{11} \mathrm{~V}_{2}-\mathrm{T}_{12} \mathrm{I}_{2}$
Option B:	$\mathrm{V}_{1}=\mathrm{AV}_{2}-\mathrm{BI}_{2}$
Option C:	$\mathrm{I}_{2}=\mathrm{CV}_{2}-\mathrm{DV}_{1}$
Option D:	$\mathrm{I}_{1}=\mathrm{CV}_{1}-\mathrm{DV}_{2}$
15.	One of the conditions for two port network to be symmetrical is ------
Option A:	$\mathrm{h}_{1} \mathrm{~h}_{22}-\mathrm{h}_{21} \mathrm{~h}_{12}=1$
Option B:	$\mathrm{AD}-\mathrm{BC}=1$
Option C:	$\mathrm{h}_{21}=-\mathrm{h}_{12}$
Option D:	$\mathrm{h}_{11}=\mathrm{h}_{22}$
16.	If $\mathrm{I}_{1}=0.1 \mathrm{~A}, \mathrm{~V}_{1}=5.2 \mathrm{~V}, \mathrm{~V}_{2}=4.1 \mathrm{~V}$ with port-2 open circuited. Open circuit impedance parameters $\mathrm{Z}_{21}=-$--ohm.
Option A:	4.1
Option B:	41
Option C:	5.1
Option D:	51
17.	A certain transmission line operating at radio frequencies has $\mathrm{L}=9 \mu \mathrm{H} / \mathrm{m}$ and $\mathrm{C}=$ $16 \mathrm{pF} / \mathrm{m}$. If the line is terminated with a resistive load of $1 \mathrm{k} \Omega$. Determine characteristic impedance.
Option A:	750 ohm
Option B:	13.33 ohm
Option C:	14.4 ohm
Option D:	1.77 ohm
18.	For a matched line, load impedance is equal to -----
Option A:	Input impedance
Option B:	Output impedance
Option C:	Zero
Option D:	Characteristic impedance.
19.	Which of the following are the primary constants of a transmission line?
Option A:	VSWR and reflection coefficient
Option B:	propagation constant and characteristic impedance
Option C:	R, L, G, C
Option D:	R and L
20.	How to calculate reflection coefficient of transmission line?
Option A:	RLC
Option B:	LC
Option C:	L/ C

Option D: $\frac{Z_{R}-Z_{0}}{Z_{R}+Z_{0}}$

| Q2 | Solve any Two Questions out of Three |
| :--- | :--- | :--- |
| A | A lossless transmission line with operating frequency of 10 MHz is
 characterized by $\mathrm{R}=0.006 \Omega / \mathrm{m}, \mathrm{L}=2.5 \mu \mathrm{H} / \mathrm{m}$ and $\mathrm{C}=4.45 \mathrm{pF} / \mathrm{m}$. Find $-(\mathrm{i})$
 Characteristic impedance (ii) propagation constant. |
| B | Refer following figure to determine Thevenin's equivalent across X - Y terminal
 Find the value of $\mathrm{i}(\mathrm{t}), \frac{d i(t)}{d t}, \frac{d^{2} i(t)}{d t^{2}}$ at $\mathrm{t}=0^{+}$. |

Q3	Solve any Two Questions out of Three	10 marks each
A	Realize following function in Foster-I and Foster-II form $\mathrm{Z}(\mathrm{S})=\frac{4\left(S^{2}+1\right)\left(S^{2}+9\right)}{S\left(s^{2}+4\right)}$	
B	For the network shown in figure, determine Z parameters of the network.	
C	For following figure, $\mathrm{K}=0.75$, determine mesh current I_{2}.	

University of Mumbai

Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Electronics and Telecommunication Engineering
Curriculum Scheme: Rev-2012
Examination: SE Semester III
Course Code: ETC304 and Course Name: Circuit and Transmission Lines
Time: 2 hour
Max. Marks: 80

Question Number	Correct Option (Enter either ' \mathbf{A}^{\prime} or ' \mathbf{B} or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	D
Q2.	A
Q3.	C
Q4	B
Q5	D
Q6	C
Q7	D
Q8.	A
Q9.	C
Q10.	B
Q11.	C
Q12.	D
Q13.	D
Q14.	B
Q15.	A
Q16.	B
Q17.	A
Q18.	D
Q19.	C
Q20.	D

University of Mumbai

Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to 20 ${ }^{\text {th }}$ January 2021

Program: EXTC
Curriculum Scheme: Rev 2012
Examination: SE Semester: III
Course Code: ETC305 and Course Name: Electronic Instruments and Measurements
Time: 2 Hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Potentiometric transducers are used for the measurement of
Option A:	Pressure but not Displacement
Option B:	Displacement but not Pressure
Option C:	Humidity
Option D:	Both Pressure and Displacement
2.	What is the principle of operation of LVDT?
Option A:	Self inductance
Option B:	Mutual inductance
Option C:	Permanence
Option D:	Reluctance
3.	Which of the following is not a piezo-electric sensor?
Option A:	PZT
Option B:	Rochelle salt
Option C:	Quartz
Option D:	RTD
4.	Strain gauge is a - - -
Option A:	Active device and converts mechanical displacement into a change of resistance
Option B:	Passive device and converts electrical displacement into a change of resistance
Option C:	Passive device and converts mechanical displacement into a change of resistance
Option D:	Active device and converts electrical displacement into a change of resistance
5.	Bourdon tube is used for the measurement of gauge pressure of
Option A:	Gas but not liquid
Option B:	Liquid but not gas
Option C:	Solid
Option D:	Gas and liquid
6.	The process of measurement
Option A:	Always disturbs the system being measured
Option B:	It may or may not disturb the system being measured
Option C:	Never disturbs the system being measured
Option D:	Repeats the measurements

7.	Function of transducer is to convert
Option A:	Electrical signal into non electrical quantity
Option B:	Non electrical quantity into electrical signal
Option C:	Electrical signal into mechanical quantity
Option D:	Mechanical signal into mechanical quantity
8.	Schering bridge is used for
Option A:	low voltages only
Option B:	low and high voltages
Option C:	high voltages only
Option D:	intermediate voltages only
9.	The balance condition of a Wheatstone bridge depends on the
Option A:	ratio of arms R1 and R2
Option B:	ratio of arms R3 and R4
Option C:	emf source and null detector
Option D:	current source and power source
10.	What is the main part of a CRO?
Option A:	Amplifier
Option B:	Sweep generator
Option C:	Trigger circuit
Option D:	CRT
11.	The range of input voltages of an electronic voltmeter can be extended by using --- -
Option A:	Functional switch
Option B:	Bridge circuit
Option C:	Input attenuator
Option D:	Rectifier
12.	In a 6-bit ladder DAC output varies from 0-10 volts. If input applied is 101001, then the output is ----
Option A:	4.22
Option B:	6.51
Option C:	2.98
Option D:	5.62
13.	The advantage of using a dual slope ADC in a digital voltmeter is that
Option A:	Its conversion time is small
Option B:	It gives ouput in BCD format
Option C:	It does not need a comparator
Option D:	Its accuracy is high
14.	The number of comparators in a 4-bit flash ADC is
Option A:	4
Option B:	6
Option C:	15
Option D:	10

15.	Which among these is the example of photo emissive cell?
Option A:	LDR
Option B:	Photodiode
Option C:	Photomultiplier tube
Option D:	Photo transistor
16.	What is a data acquisition system?
Option A:	system used for data processing, conversion and transmission
Option B:	accepts data as an input
Option C:	removes noise
Option D:	boosts the signal
17.	Transient signals can be observed using
Option A:	Storage oscilloscope
Option B:	Sampling oscilloscope
Option C:	Wave analyzer
Option D:	Spectrum analyzer
18.	Which of the following is not present in the spectrum analyzer?
Option A:	RF amplifier
Option B:	Swept local Oscillator
Option C:	Slotted line
Option D:	Sweep voltage generator
19.	Which analyzer measures capacitance characteristics of semiconductor devices?
Option A:	Spectrum analyzer
Option B:	Distortion analyzer
Option C:	Capacitance-Voltage analyzer
Option D:	Network analyzer
20.	Maxwell bridge is used for measurement of inductance of which type of coil?
Option A:	Low Q coil
Option B:	Medium Q coil
Option C:	High Q coil
Option D:	Very High Q coil

Q2	Solve any Two Questions out of Three 10 marks each
A	Explain basic principle and working of flash ADC with a neat diagram.
B	Explain working of Energy meter.
C	Explain Kelvin's double bridge and how it is used for resistance measurement?

Q3. A	Solve any Two
i.	What are the different types of telemetry systems? Explain any one.

ii.	Explain construction and working of Bourdon tube gauge.
iii.	What is the significance of 3-1/2 digit display?
Q3. B	Solve any One
i.	Draw and explain block diagram of Digital storage oscilloscope and list its operational modes.
ii.	Explain FFT analyzer with a complete block diagram.

University of Mumbai

Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021
to 20 ${ }^{\text {th }}$ January 2021
Program: EXTC
Curriculum Scheme: Rev2012
Examination: SE Semester: III
Course Code: ETC305 and Course Name: Electronic Instruments and Measurements

Question Number	Correct Option (Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	D
Q2.	B
Q3.	D
Q4	C
Q5	D
Q6	A
Q7	B
Q8.	B
Q9.	A
Q10.	D
Q11.	B
Q12.	D
Q13.	C
Q14.	C
Q15.	A
Q16.	A
Q17.	C
Q18.	B
Q19.	B
Q20.	

