## K. J. Somaiya Institute of Engineering and Information Technology <br> Sion, Mumbai - 400022

NAAC Accredited Institute with 'A' Grade
NBA Accredited 3 Programs
(Computer Engineering, Electronics \& Telecommunication Engineering and Electronics Engineering)
Permanently Affiliated to University of Mumbai
EXAMINATION TIME TABLE (JANUARY 2021)
PROGRAMME - F.E.(ALL BRANCHES)(REV-2016) (Choice Base Credit Grading System )

## SEMESTER - I

| Days and Dates | Time | Paper Code | Paper |
| :--- | :---: | :---: | :--- |
| Thursday, January 07, 2021 | 12.30 p.m to 02.30 p.m. | FEC101 | Applied Mathematics - I. |
| Saturday, January 09, 2021 | 12.30 p.m to 02.00 p.m. | FEC102 | Applied Physics - I. |
| Tuesday, January 12, 2021 | 12.30 p.m to 02.00 p.m. | FEC103 | Applied Chemistry - I. |
| Thursday, January 14, 2021 | 12.30 p.m to 02.30 p.m. | FEC104 | Engineering Mechanics. |
| Saturday, January 16, 2021 | 12.30 p.m to 02.30 p.m. | FEC105 | Basic Electrical Engineering. |
| Tuesday, January 19, 2021 | 12.30 p.m to 02.00 p.m. | FEC106 | Evironmental Studies (EVS). |

Change if any, in the time table shall be communicated on the college web site.

## Mumbai



20th December 2020

## University of Mumbai

Examination 2020 under cluster no-3 FCRIT (Lead College Short name)
Program: First Year Engineering
Curriculum Scheme: Rev 2016
Examination: First Year Semester I
Course Code: FEC101 and Course Name: Applied Mathematics-I
Time: 1-hour
Max. Marks: 50

For the students: - All the Questions are compulsory and carry equal marks.

| Q1. | Represent $i^{i}$ in terms of e |
| :---: | :---: |
| Option A: | $e^{\frac{-\pi}{3}}$ |
| Option B: | $e^{\frac{-3 \pi}{2}}$ |
| Option C: | $e^{\frac{-\pi}{6}}$ |
| Option D: | $e^{\frac{-\pi}{2}}$ |
| Q2. | The first iterative values of $x, y, z$ for the system of equations $4 x-3 y-z=40, x-6 y+2 z=-28$ <br> $x-2 y+12 z=-86$ usig Gauss seidel method |
| Option A: | $x=10, y=4.666, z=-14$ |
| Option B: | $x=10, y=6.333, z=6.944$ |
| Option C: | $x=10, y=6.333, z=-6.944$ |
| Option D: | $x=10, y=-6.333, z=6.944$ |
| Q3. | If $f(x, y)=\sin \sin (x y)+x^{2} \log y$, then the value of $\frac{\partial^{2} f}{\partial y \partial x}\left(0, \frac{\pi}{2}\right)$ is |
| Option A: | 1 |
| Option B: | 0 |
| Option C: | 3 |
| Option D: | 33 |
| Q4. | The Taylors series expansion of $f(x)=7 x^{2}-6 x+1$ about $x=2$ is given by $a+b(x-2)+c(x-2)^{2}$ then the value of $a+b+c$ is |
| Option A: | -1 |
| Option B: | 0 |
| Option C: | 46 |
| Option D: | 17 |
| Q5. | If $A=[1-i-1+i i 11+i 1+i-1+i 0]$ is a unitary matrix, then $A$ |
| Option A: | $[1 i 1+i-i 1-1+i-1+i 1+i 0]$ |

Examination 2020 under cluster no-3 FCRIT (Lead College Short name)

| Option B: | $[1 i 1+i i 11+i 1-i-1+i 0]$ |
| :---: | :---: |
| Option C: | $[1-i-1+i i 11+i 1+i-1+i 0]$ |
| Option D: | $[1 i 1+i i 11+i 1+i-1+i 0]$ |
| Q6. | If $\sin \sin 5 \theta=a \cos ^{4} \theta \sin \theta+b \cos ^{2} \theta \sin ^{3} \theta+c \sin ^{5} \theta$, the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ |
| Option A: | $a=5, \quad b=10, \quad c=1$ |
| Option B: | $a=5, b=-10, c=-1$ |
| Option C: | $a=5, \quad b=-10, c=1$ |
| Option D: | $a=-5, \quad b=10, c=1$ |
|  |  |
| Q7. | The $n^{\text {th }}$ derivative of $y=\sin ^{2} x$ is |
| Option A: | $-(2)^{n-1} \cos \left(2 x+\frac{n \pi}{2}\right)$ |
| Option B: | $(2)^{n-1} \cos \left(2 x+\frac{n \pi}{2}\right)$ |
| Option C: | - $(2)^{n-1} \cos (2 x+n \pi)$ |
| Option D: | $(2)^{n-1} \cos \left(2 x-\frac{n \pi}{2}\right)$ |
|  |  |
| Q8. | If $\log \log (\tan x)=y$ then the value sinhny is |
| Option A: | $\frac{1}{2}\left(\tan ^{n} x+\cot ^{n} x\right)$ |
| Option B: | $\frac{1}{2}\left(\tan ^{n} x-\cot ^{n} x\right)$ |
| Option C: | $\frac{1}{2}\left(\cot ^{n} x-\tan ^{n} x\right)$ |
| Option D: | $-\frac{1}{2}\left(\tan ^{n} x-\cot ^{n} x\right)$ |
| Q9. | If $z(x, y)=\frac{x+y}{y}$ then $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$ is |
| Option A: | 1 |
| Option B: | 2 |
| Option C: | 0 |
| Option D: | 3 |
| Q10. | The rank of the following matrix $A=[32-1426745]$ is |
| Option A: | 0 |
| Option B: | 3 |
| Option C: | 1 |

Examination 2020 under cluster no-3 FCRIT (Lead College Short name)

| Option D: | 2 |
| :---: | :---: |
| Q11. | If $z=\sin ^{-1}\left\{\frac{x^{3}+y^{3}+z^{3}}{x+y+z}\right\}$ then $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y} \quad$ is |
| Option A: | 2 tanz |
| Option B: | $2 \operatorname{cotz}$ |
| Option C: | tanz |
| Option D: | cotz |
| Q12. | The imaginary part of $\cosh ^{-1}\left(\frac{3 i}{4}\right)$ is |
| Option A: | $-\frac{\pi}{2}$ |
| Option B: | $\frac{\pi}{2}$ |
| Option C: | $\pi$ |
| Option D: | $\frac{\pi}{4}$ |
| Q13. | The values of $x, y, z$ that satisfy the following system of linear equations $x+2 y+3 z=6, x+3 y+4 z=8,2 x+2 y+3 z=12$ are |
| Option A: | $\mathrm{x}=6, \mathrm{y}=3, \mathrm{z}=2$ |
| Option B: | $\mathrm{x}=12, \mathrm{y}=3, \mathrm{z}=4$ |
| Option C: | $x=6, y=6, z=-4$ |
| Option D: | $x=6, y=6, z=4$ |
| Q14. | The value of $\left(1+\frac{1}{x}\right)^{x}$ |
| Option A: | 1 |
| Option B: | $e^{-1}$ |
| Option C: | 1 |
| Option D: | e |
| Q15. | If $p \log (a+i b)=(x+i y) \operatorname{logm}$ then $\frac{y}{x}$ is |
| Option A: | $\frac{\tan ^{-1}\left(\frac{b}{a}\right)}{\log \left(a^{2}+b^{2}\right)}$ |
| Option B: | $\frac{2 \tan ^{-1}\left(\frac{b}{a}\right)}{\log \left(a^{2}+b^{2}\right)}$ |
| Option C: | $\frac{2 p \tan ^{-1}\left(\frac{b}{a}\right)}{\log \left(a^{2}+b^{2}\right)}$ |
| Option D: | $\frac{2 \tan ^{-1}\left(\frac{a}{b}\right)}{\log \left(a^{2}+b^{2}\right)}$ |
| Q16. | If $y=\frac{1}{x}$, then fifth derivative $y_{5}$ is |

Examination 2020 under cluster no-3 FCRIT (Lead College Short name)

| Option A: | $-\frac{5!}{x^{6}}$ |
| :---: | :---: |
| Option B: | $\frac{5!}{x^{6}}$ |
| Option C: | $-\frac{5!}{x^{5}}$ |
| Option D: | $\frac{5!}{x^{5}}$ |
| Q17. | Which of the following is not a root of $(-1)^{\frac{1}{3}}$ |
| Option A: | $\frac{-\sqrt{3}+i}{2 i}$ |
| Option B: | -1 |
| Option C: | $\frac{\sqrt{3}-i}{2 i}$ |
| Option D: | $\frac{\sqrt{3}+i}{2 i}$ |
| Q18. | If $z=x^{2}+y^{2}, x=$ cost, $y=$ sint, then the value of $\frac{d z}{d t}$ at $t=\pi$ |
| Option A: | 1 |
| Option B: | -1 |
| Option C: | 0 |
| Option D: | $\pi$ |
| Q19. | If $y=\sin \sin (\log x)$ and $x^{2} y_{2}+x y_{1}+y=0$ then |
| Option A: | $x^{2} y_{n+2}+(2 n+1) y_{n+1}+\left(n^{2}+1\right) y_{n}=0$ |
| Option B: | $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}+1\right) y_{n}=0$ |
| Option C: | $x^{2} y_{n+2}+(2 n-1) x y_{n+1}+\left(n^{2}+1\right) y_{n}=0$ |
| Option D: | $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-1\right) y_{n}=0$ |
| Q20. | If the matrix $A=[22+i-2 i x 3 y 2 i-i 1]$ is Hermitian then the values |
| Option A: | $x=-2-i, y=-i$ |
| Option B: | $x=2-i, y=-i$ |
| Option C: | $x=2+i, y=i$ |
| Option D: | $x=2-i, y=i$ |
| Q21. | The maximum or minimum value of the function $f(x, y)=y^{2}+4 x y+3 x^{2}+x^{3}$ |
| Option A: | minimum at (0, 0) |
| Option B: | maximum at ( 0,0 ) |

Examination 2020 under cluster no-3 FCRIT (Lead College Short name)

| Option C: | minimum at $\left(\frac{2}{3}, \frac{-4}{3}\right)$ |
| :---: | :---: |
| Option D: | maximum at ( $\left.\frac{2}{3}, \frac{4}{3}\right)$ ) |
| Q22. | Newton - Raphson method is used to find root of the equation $x^{2}-13=0$ with 3.5 as the initial value, then the first iterative approximation is |
| Option A: | 3.575 |
| Option B: | 3.676 |
| Option C: | 3.607 |
| Option D: | 3.667 |
| Q23. | The following system of equations $2 x-y+3 z=1$, $3 x-2 y+5 z=2, \quad-x+4 y+z=3$ has |
| Option A: | No solution |
| Option B: | An infinite number of solutions |
| Option C: | More than one but a finite number of solutions |
| Option D: | Unique solution |
| Q24. | Given $p=x+y+z, q=y+z, r=z$ then the value of $\frac{\partial(p, q, r)}{\partial(x, y, z)}$ is |
| Option A: | 0 |
| Option B: | 1 |
| Option C: | 2 |
| Option D: | -1 |
| Q25. | The expansion of $f(x)=\log \log \left(1+e^{x}\right)$ is |
| Option A: | $\log 2+\frac{x}{2}+\frac{x^{2}}{8}-\frac{x^{4}}{192}+\cdot \ldots \ldots \ldots \ldots$ |
| Option B: | $\log 2+\frac{x}{2}+\frac{x^{2}}{8}+\frac{x^{4}}{192}+\cdot \ldots \ldots \ldots \ldots$ |
| Option C: | $\log 2+\frac{x}{2}+\frac{x^{3}}{8}-\frac{x^{5}}{192}+\cdot \ldots \ldots \ldots .$ |
| Option D: | $\log 2+\frac{x}{2}+\frac{x^{3}}{8}+\frac{x^{5}}{192}+\cdot \ldots \ldots \ldots$ |

## University of Mumbai

## Examination 2020 under cluster no-03 (FCRIT)

Program: First Year Engineering
Curriculum Scheme: Rev2016
Examination: First Year Semester I
Course Code:FEC101 and Course Name: Applied Mathematics I

| Question <br> Number | Correct Option (Enter either ' $A$ ' or ' $B$ ' or 'C' or 'D') |
| :---: | :---: |
| Q1. | D |
| Q2. | B |
| Q3. | A |
| Q4 | C |
| Q5 | A |
| Q6 | C |
| Q7 | A |
| Q8. | B |
| Q9. | C |
| Q10. | D |
| Q11. | A |
| Q12. | B |
| Q13. | C |
| Q14. | D |
| Q15. | B |
| Q16. | A |
| Q17. | C |
| Q18. | C |
| Q19. | B |
| Q20. | D |
| Q21. | C |
| Q22. | C |
| Q23. | D |
| Q24. | B |

## University of Mumbai

Examination 2020 under cluster_3__(FCRIT)
Program: F.E.(All branches)
Curriculum Scheme: Rev 2016
Examination: FE/ Semester-I
Course Code: C103 and Course Name: Applied Chemistry-I
Time: $11 / 2$ hour
Max. Marks: 60

| Additional Data: Atomic Weights$[\mathrm{Ca}=40, \mathrm{Mg}=24, \mathrm{Na}=58.5, \mathrm{~K}=39, \mathrm{Cl}=35.5, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{H}=1]$ |  |
| :---: | :---: |
| Q. 1 | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| 1. | A hard water sample have following impurities: $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}=150 \mathrm{mg} / \mathrm{L}, \mathrm{MgCl}_{2}=$ $135 \mathrm{mg} / \mathrm{L}$ and $\mathrm{NaCl}=78 \mathrm{mg} / \mathrm{L}$. The temporary hardness of the above water is $\mathrm{mgCaCO}_{3} / \mathrm{L}$ |
| Option A: | 142.10 |
| Option B: | 92.59 |
| Option C: | 234.69 |
| Option D: | 150 |
| 2. | Which of the following is the condensation polymer? |
| Option A: | Polyethylene |
| Option B: | PVC |
| Option C: | PMMA |
| Option D: | Kevlar |
| 3. | In Sap value experiment 3 g of oil was mixed with 25 ml of 0.5 N alcoholic KOH . When the reaction mixture was titrated it required exactly 10 ml of 0.5 N HCl . The sap value of the oil is close to which of the following? |
| Option A: | 140 |
| Option B: | 178 |
| Option C: | 280 |
| Option D: | 330 |
| 4. | In the manufacturing of Cement, quicklime from limestone is produced in which of the following zone inside the rotary kiln? |
| Option A: | Drying Zone |
| Option B: | Clinckering zone |
| Option C: | Calcination zone |
| Option D: | Reducing zone |
| 5. | Which of the following is not true for a Thermoplastic? |
| Option A: | They become soft on heating and regains back on cooling. |
| Option B: | They are strong and hard. |
| Option C: | They can be reclaimed from the waste. |
| Option D: | They are mostly linear polymers. |

## University of Mumbai

Examination 2020 under cluster _3__ (FCRIT)

| 6. | As oil is gradually heated, the temperature at which vapors produced by it give rise to tiny spark in the presence of external flame is known as |
| :---: | :---: |
| Option A: | Flash Point |
| Option B: | Aniline Point |
| Option C: | Emulsification Point |
| Option D: | Fire Point |
|  |  |
| 7. | Which of the following is not related to Buckminster Fullerene? |
| Option A: | Compositionally Buckminster Fullerene is C60. |
| Option B: | Bonding of carbon in fullerene is same as that of carbon in diamond. |
| Option C: | Fullerene finds good applications in electronic devices. |
| Option D: | Fullerene has good tensile strength. |
|  |  |
| 8. | Fillers are added at the time of manufacturing of plastic because |
| Option A: | They improve the flexibility of the plastic. |
| Option B: | They prevent plastic from sticking to the mold at the time of fabrication. |
| Option C: | They impart the strength to plastic when it is formed. |
| Option D: | They accelerate plastic formation from its raw materials. |
|  |  |
| 9. | One liter of hard water with hardness of $120 \mathrm{mg} \mathrm{CaCO}_{3} / \mathrm{L}$ was passed through the zeolite softener. The amount of NaCl obtained in the treated water will be closer to which of the following? |
| Option A: | 70.4 mg |
| Option B: | 100 mg |
| Option C: | 120 mg |
| Option D: | 140.4 mg |
|  |  |
| 10. | Which of the following is true for 'Ion Exchange' softening process for water? |
| Option A: | It removes dissolved organic impurities from water. |
| Option B: | It removes colloidal impurities from water. |
| Option C: | It removes ionic impurities from water |
| Option D: | All of the above |
|  |  |
| 11. | Which of the following construction material has highest strength? |
| Option A: | Lime |
| Option B: | Cement |
| Option C: | Concrete |
| Option D: | RCC |
|  |  |
| 12. | Degree of freedom is likely to be zero in which of the following equilibrium of water system? |
| Option A: | Ice $=$ Water $=$ Vapors |
| Option B: | Water = Vapors |
| Option C: | Ice = Water |
| Option D: | Ice = Vapors |
|  |  |
| 13. | Select the correct option about reverse osmosis process. |

## University of Mumbai

Examination 2020 under cluster _3_ (FCRIT)

| Option A: | During the process, dissolved organic impurities are allowed to pass through the <br> semi-permeable membrane. |
| :---: | :--- |
| Option B: | During the process, only dissolved ionic salts are allowed to pass through the <br> semi-permeable membrane. |
| Option C: | During the process, only Pure water is allowed to pass through the <br> semi-permeable membrane. |
| Option D: | Both water and dissolved salts are allowed to pass through the semi-permeable <br> membrane. |
|  |  |
| 14. | Which of the following on polymerization gives Natural Rubber? |
| Option A: | Styrene |
| Option B: | Ethylene |
| Option C: | Vinyl Chloride |
| Option D: | Isoprene |
|  |  |
| 15. | Which of the following is incorrect with respect to functions of Lubricants? |
| Option A: | They reduce the friction of machine. |
| Option B: | They reduce the corrosion resistance of machine. |
| Option C: | They reduce wear and tear of machine. |
| Option D: | They reduce entry of dirt and dust to the machine |
|  |  |


| Q. 2 | Attempt any THREE from the following $\quad$ [5 marks each] |
| :---: | :--- |
| (a) | Explain Ion Exchange method of softening of hard water. |
| (b) | Draw and explain phase diagram of two component Ag -Pb system. |
| (c) | Discuss the mechanism of Extreme Pressure Lubrication. |
| (d) | Write a brief note on Compounding of Plastics. |
| (e) | One liter of hard water sample contains $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}=135 \mathrm{mg}, \mathrm{CaCl}_{2}=170 \mathrm{mg}, \mathrm{MgCl}_{2}$ <br> = 140mg. Calculate pure lime and soda required to soften one million liters of this <br> hard water. |


| Q.3 | Solve any THREE from the following:- $\quad$ [5 marks each] |
| :---: | :--- |
| (a) | Explain briefly Transfer molding of plastic material. |
| (b) | Explain wet process of manufacturing of the Portland cement. |
| (c) | Under which conditions Solid Lubricants are used? Explain the structure of Graphite. |
|  | In determination of hardness of water, the standard hard water was prepared by <br> dissolving one gram of CaCO in one liter of distilled water. 50 ml of this water <br> required 48 ml of EDTA. 50 ml of unknown hard water required 37 ml of same EDTA. <br> This unknown hard water was boiled, cooled and filtered. 50 ml of this boiled water <br> required 29 ml of EDTA. Calculate hardness of all types. |
| (e) | Write a short note on Conducting Polymers. |

# University of Mumbai <br> Examination 2020 under cluster __3_ (FCRIT) 

Program: FE (All Branches)<br>Curriculum Scheme: Rev2016<br>Examination: FE/ Semester I<br>Course Code: FEC103 and Course Name: Applied Chemistry-I Max. Marks: 60

Time: $11 / 2$ hour

| Question <br> Number | Correct Option <br> (Enter either ' $A$ ' or ' $B$ ' or 'C' or 'D') |
| :---: | :---: |
| Q1. | B |
| Q2. | D |
| Q3. | A |
| Q4 | C |
| Q5 | B |
| Q6 | A |
| Q7 | B |
| Q8. | C |
| Q9. | D |
| Q10. | C |
| Q11. | D |
| Q12. | A |
| Q13. | C |
| Q14. | D |
| Q15. | B |

# University of Mumbai <br> Examination 2020 under cluster No. 3 (Lead College: FCRIT) <br> Examinations Commencing from $7^{\text {th }}$ January 2021 to $\mathbf{2 0}^{\text {th }}$ January 2021 <br> Program: FE Engineering (All Branches) <br> Curriculum Scheme: Rev-2016 <br> Examination: FE Semester I <br> Course Code: FEC102 and Course Name: Applied Physics I 

Time: 2 hours
Max. Marks: 60

$(15 \times 2=30)$

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | The atomic radius of FCC crystal is |
| Option A: | $\mathrm{r}=\mathrm{a}$ |
| Option B: | $\mathrm{r}=a / 2 \sqrt{ } 2$ |
| Option C: | $\mathrm{r}=3 \mathrm{a} / \sqrt{ } 2$ |
| Option D: | $\mathrm{r}=\sqrt{ } 3 / 2 \mathrm{a}$ |
|  |  |
| 2. | In a Hexagonal unit cell |
| Option A: | $\mathrm{a}=\mathrm{b}=\mathrm{c}, \alpha=\beta=\gamma=90^{\circ}$ |
| Option B: | $\mathrm{a} \ddagger \mathrm{b} \ddagger \mathrm{c}, \alpha \neq \beta=\gamma \neq 90^{\circ}$ |
| Option C: | $\mathrm{a} \ddagger \mathrm{b} \ddagger \mathrm{c}, \alpha=\beta=\gamma=90^{\circ}$ |
| Option D: | $\mathrm{a}=\mathrm{b} \ddagger \mathrm{c}, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$ |
|  |  |
| 3. | Line defects are called |
| Option A: | Zero order disorder |
| Option B: | One-dimensional disorder |
| Option C: | Two-dimensional disorder |
| Option D: | Three-dimensional disorder |
|  |  |
| 4. | De-Broglie matter waves are like |
| Option A: | Electromagnetic waves |
| Option B: | Mechanical waves |
| Option C: | Symbolic probability waves |
| Option D: | Transverse waves |
|  |  |
| 5. | $\|\Psi\|^{2}=0$, where $\Psi$ is a wave function, means at time t |
| Option A: | Strong probability of finding a particle |
| Option B: | Particle is absent at that point |
| Option C: | little probability of finding the particle |
| Option D: | Cannot ascertain with this condition |
|  |  |
| 6. | The energy operator in a system can be expressed as |
| Option A: | $E \Psi=i \hbar \frac{\partial \Psi}{\partial t}$ |
| Option B: | $\mathrm{E} \Psi=\mathrm{i} 2 \hbar \frac{\partial \Psi}{\partial l}$ |
| Option C: | $E \Psi=i 4 \hbar \frac{\partial \Psi}{\partial t}$ |


| Option D: | $E \Psi=i \hbar \frac{\partial \Psi}{\partial v}$ |
| :---: | :---: |
| 7. | Fermi energy is defined as the ---------- energy that a free electron can have in a material at $0^{\circ} \mathrm{K}$ |
| Option A: | maximum |
| Option B: | minimum |
| Option C: | acceptor level |
| Option D: | donor level |
| 8. | In an intrinsic semiconductor, the electron concentration (n) and hole concentration(p) are |
| Option A: | $\mathrm{n}=\mathrm{p}$ |
| Option B: | $\mathrm{n}>\mathrm{p}$ |
| Option C: | $\mathrm{n}<\mathrm{p}$ |
| Option D: | $\mathrm{n} \times \mathrm{p}$ |
| 9. | In a p-type semiconductor at normal temperature the acceptor level is just------the valence band |
| Option A: | below |
| Option B: | above |
| Option C: | matches |
| Option D: | un predictable |
|  |  |
| 10. | Super conductors are perfect-------- |
| Option A: | Ferromagnetic materials |
| Option B: | Ferri magnetic materials |
| Option C: | Para magnetic materials |
| Option D: | Dia magnetic materials |
| 11. | A sound has intensity of $5 \times 10^{-8} \mathrm{w} / \mathrm{m}^{2}$. What is the intensity of sound level in decibels ( $\mathrm{I}_{\mathrm{o}}=10^{-12} \mathrm{w} / \mathrm{m}^{2}$ ) |
| Option A: | 46.99 dB |
| Option B: | 40.99 dB |
| Option C: | 41.99 dB |
| Option D: | 36.99 dB |
| 12. | When mechanical pressure is applied on the opposite faces of certain crystal then there would develop equal and opposite electric charges on the other faces, this phenomenon is called --- |
| Option A: | Magneto striction effect |
| Option B: | Messiner effect |
| Option C: | Hall effect |
| Option D: | Piezo electric effect |
|  |  |
| 13. | The high frequency oscillation with magnetostriction can be calculated by( $1=$ length of rod, $\mathrm{Y}=$ Youngs modulus, $\rho=$ density |
| Option A: | $N=\frac{1 \sqrt{Y}}{2 l \sqrt{\rho}}$ |
| Option B: | $N=\frac{3 \sqrt{Y}}{2 l \sqrt{\rho}}$ |


| Option C: | $N=\frac{4 \sqrt{V}}{3 l \sqrt{\rho}}$ |  |  |
| :---: | :---: | :---: | :---: |
| Option D: | $N=\frac{1 \sqrt{Y}}{2 V \sqrt{\rho}}$ |  |  |
|  |  |  |  |
| 14. | The temperature at which a material in a normal state goes into a superconducting <br> state is known as |  |  |
| Option A: | Zero point |  |  |
| Option B: | Critical magnetic field |  |  |
| Option C: | Critical temperature |  |  |
| Option D: | Vortex state |  |  |
|  |  |  |  |
| 15. | The equation of one dimensional motion of a free particle is |  |  |
| Option A: | $\frac{d^{2} \Psi}{d x^{2}}+K^{2} \Psi=0$ |  |  |
| Option B: | $H=\frac{\hbar^{2}}{2 m} \nabla^{2}+V$ |  |  |
| Option C: | $\frac{d^{2} y}{d x^{2}}=\frac{1}{v^{2}} \cdot \frac{d^{2} y}{d t^{2}}$ |  |  |
| Option D: | $E=\frac{p^{2}}{2 m}+V$ |  |  |
|  |  |  |  |


$\left.$| Q2 | Solve any Three out of Five |
| :---: | :--- | | 5 marks each |
| ---: |
| (15 Marks) | \right\rvert\,


| Q3. | Solve any Three Questions out of ive5 marks each <br> (15 Marks) |
| :---: | :--- |
| A | Explain Heisenberg's uncertainty principle and give two examples. |
| B | Derive the formula to calculate the interplanar spacing for a family of planes <br> $<\mathrm{h} \mathrm{k} \mathrm{1} ~$ and cube edge a. |
| C | With energy level diagram, explain the variation of Fermi energy level with <br> temperature in an n-type semiconductor. |
| D | Copper has FCC structure. If the interplanar spacing for the set of (111) planes <br> is 2.08 A ${ }^{\circ}$, find the density and the diameter of a Cu atom. The atomic weight <br> of Cu is 63.54. |


| E | List any five factors of Good acoustics. |
| :--- | :--- |

## University of Mumbai

Examination 2020 under cluster No. 3 (Lead College: FCRIT)
Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to 20 ${ }^{\text {th }}$ January 2021
Program: FE Engineering (All Branches)
Curriculum Scheme: Rev-2016
Examination: FE Semester I
Course Code: FEC102 and Course Name: Applied Physics-I
Time: 2 hour
Max. Marks: 60

| Question <br> Number | Correct Option <br> (Enter either 'A' or 'B' <br> or ' $\mathbf{C}$ ' or ' $\mathbf{D}$ ') |
| :---: | :---: |
| Q1. | B |
| Q2. | D |
| Q3. | B |
| Q4 | C |
| Q5 | B |
| Q6 | A |
| Q7 | A |
| Q8. | A |
| Q9. | B |
| Q10. | D |
| Q11. | A |
| Q12. | D |
| Q13. | A |
| Q14. | C |
| Q15. | A |

## University of Mumbai

Examination 2020 under cluster 3(Lead College: FCRIT)
Examinations Commencing from $7^{\text {th }}$ January 2021 to $\mathbf{2 0}^{\text {th }}$ January 2021
Program: FE (ALL BRANCHES)
Curriculum Scheme: Rev 2016
Examination: FE Semester I
Course Code: FEC105 and Course Name: Basic Electrical Engineering
Time: 2 hours
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are <br> compulsory and carry equal marks |
| :---: | :--- |
|  |  |
| 1. | If two resistors of same value are connected in series, its equivalent resistance <br> will be |
| Option A: | Double the value of a resistor |
| Option B: | Half the value of a resistor |
| Option C: | Four times the value of the resistor |
| Option D: | Quarter the value of a resistor |
|  |  |
| 2. | If each branch of a star network has resistance 9 Ohms, then each branch of the <br> equivalent delta circuit will have a resistance of <br> Option A: <br> Option B: <br> Option C: <br> Option D: 3 |
| 3. | A network contains only an independent current source and resistors. If the values <br> of all resistors are doubled, the value of node voltage will |
| Option A: | become half |
| Option B: | remain unchanged |
| Option C: | become double |
| Option D: | become triple |
|  |  |
| 4. | For a dc circuit, if Thevenin's voltage is 5 Volts and Thevenin's resistance is 10 <br> Ohms, calculate the current through load resistor of value 10 Ohms. |
| Option A: | 0.5 A |
| Option B: | 0.25 A |
| Option C: | 1 A |
| Option D: | 5 A |
| 5. | In Superposition theorem, when one current source is under consideration, the <br> other voltage sources are |
| Option A: | opened |
| Option B: | removed |
| Option C: | shorted |
| Option D: | undisturbed |
|  |  |


| 6. | Norton current is |
| :---: | :---: |
| Option A: | open circuit current |
| Option B: | short circuit current |
| Option C: | open circuit and short circuit current |
| Option D: | load current |
| 7. | Calculate current through 15 Ohms load resistor, if the Norton's current is 3 Amperes and Norton's resistance is 15 Ohms. |
| Option A: | 0.1 Amperes |
| Option B: | 0.2 Amperes |
| Option C: | 1.5 Amperes |
| Option D: | 3 Amperes |
|  |  |
| 8. | Nodal analysis involves application of |
| Option A: | Kirchoff's Voltage Law |
| Option B: | Kirchoff's Current Law |
| Option C: | Ohms Law |
| Option D: | Superposition theorem |
|  |  |
| 9. | For a purely capacitive circuit, current ___ the voltage by |
| Option A: | lags, 180 degree |
| Option B: | leads, 180degree |
| Option C: | lags, 90degree |
| Option D: | leads, 90degree |
|  |  |
| 10. | The average and effective values for a sinusoidal a.c waveform are |
| Option A: | Vavg $=0.637 \mathrm{~V}_{\mathrm{m}}, \mathrm{V}=0.5 \mathrm{~V}_{\mathrm{m}}$ |
| Option B: | Vavg $=0.5 \mathrm{~V}_{\mathrm{m}}, \mathrm{V}=0.5 \mathrm{~V}_{\mathrm{m}}$ |
| Option C: | Vavg $=0.11 \mathrm{~V}_{\mathrm{m}}, \mathrm{V}=0.707 \mathrm{~V}_{\mathrm{m}}$ |
| Option D: | Vavg $=0.637 \mathrm{~V}_{\mathrm{m}}, \mathrm{V}=0.707 \mathrm{~V}_{\mathrm{m}}$ |
|  |  |
| 11. | A series R-L-C circuit will have unity power factor if operated at a frequency of |
| Option A: | 1/ (LC) |
| Option B: | $1 /(\omega$ times root of (LC) $)$ |
| Option C: | $1 /\left(\omega^{2}\right.$ times root of (LC) $)$ |
| Option D: | 1/ (2pi times root of (LC)) |
|  |  |
| 12. | A sinusoidal voltage varies from 0 to a maximum of 20 Volts. The voltage at the instant of 60 degrees of the cycle will be |
| Option A: | 17.32 Volts |
| Option B: | 10 Volts |
| Option C: | 13.33 Volts |
| Option D: | 5 Volts |
|  |  |
| 13. | A voltage of $150 \mathrm{~V}, 50 \mathrm{~Hz}$ is applied to a coil having negligible resistance and inductance 0.2 H . If voltage is taken as reference, the value of current is |
| Option A: | $3.378 \operatorname{Sin}(314 \mathrm{t}-90)$ |
| Option B: | $3.378 \operatorname{Sin}(314 t+90)$ |
| Option C: | $3.378 \operatorname{Sin}(314 \mathrm{t}-180)$ |


| Option D: | $3.378 \operatorname{Sin}(314 t+180)$ |
| :---: | :---: |
| 14. | Three identical coils each ( $3+2 \mathrm{j}$ ) Ohms are connected in star across 415Volts, $50 H e r t z, 3$ phase supply. Determine i) Vph ii) Iph . |
| Option A: | Vph=240 Volts, Iph=33.45 Amperes |
| Option B: | Vph= 239.6 Volts, Iph=66.45 Amperes |
| Option C: | Vph=415 Volts, Iph=115.1 Amperes |
| Option D: | Vph= 415 Volts, Iph=50 Amperes |
| 15. | In a three phase system, when three equal phase impedances are connected in delta, the equivalent star impedance is $\qquad$ of the delta impedance |
| Option A: | half |
| Option B: | one- third |
| Option C: | equal |
| Option D: | one-fourth |
| 16. | The voltage and current relation for a three phase balanced star connected load is |
| Option A: | $\mathrm{V}_{\mathrm{L}}=$ root 3 times $\mathrm{V}_{\text {PH }}, \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{PH}}$ |
| Option B: | $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{PH}}, \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\text {PH }}$ |
| Option C: | $\mathrm{V}_{\mathrm{L}}=$ root 3 times $\mathrm{V}_{\mathrm{PH}}, \mathrm{I}_{\mathrm{L}}=$ root 3 times $\mathrm{I}_{\mathrm{PH}}$ |
| Option D: | $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{PH}}, \mathrm{I}_{\mathrm{L}}=$ root 3 times $\mathrm{I}_{\mathrm{PH}}$ |
| 17. | Short circuit test on transformer is conducted to determine |
| Option A: | Core losses |
| Option B: | Copper losses |
| Option C: | Hysteresis losses |
| Option D: | Eddy current losses |
| 18. | If R is the resistance of secondary winding of an electrical transformer and K is the transformation ratio then the equivalent secondary resistance referred to primary will be |
| Option A: | R/VK |
| Option B: | R/K ${ }^{2}$ |
| Option C: | $\mathrm{RK}^{2}$ |
| Option D: | $\mathrm{K} / \mathrm{R}^{2}$ |
| 19. | Where is a field winding mounted in a dc machine? |
| Option A: | Stator |
| Option B: | Rotor |
| Option C: | Anywhere on stator or rotor |
| Option D: | There is no field winding in a dc machine |
| 20. | A generator is a machine that converts $\square$ energy at its prime mover to produce $\qquad$ energy. |
| Option A: | Mechanical, sound |
| Option B: | Solar, mechanical |
| Option C: | Mechanical, electrical |

```
Option D: \(\quad\) Electrical, mechanical
```

| $\begin{gathered} \text { Q2. } \\ \text { (20 Marks) } \end{gathered}$ |  |
| :---: | :---: |
| A | Solve any Two (5 marks each) |
| 1. | Three identical coils, each having resistance of 20 Ohms and inductance of 0.05 H , are connected in star across a three phase $50 \mathrm{~Hz}, 230 \mathrm{~V}$ supply. Calculate the phase current, line current and total power absorbed. Draw phasor diagram. |
| ii. | A coil having a resistance of 5 Ohms and inductance of 31.8 mH , is connected to $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find circuit current, impedance, phase angle, power factor and power consumed. |
| iii. | Explain the principle of operation of DC generator. |
| B | Solve any One (10marks each) |
| i. | State and explain the Superposition theorem with an example containing both a voltage source and a current source |
| ii. | A $200 / 400 \mathrm{~V}, 50 \mathrm{~Hz}$ single phase transformer gave the following test results: OC test: $200 \mathrm{~V} \quad 1 \mathrm{~A} 100 \mathrm{~W}$ (with an open circuit at secondary) SC test: $15 \mathrm{~V} \quad 10 \mathrm{~A} \quad 85 \mathrm{~W}$ (with a short circuit at primary) Obtain the parameters and draw the equivalent circuit of the transformer as referred to the primary. |
| $\begin{gathered} \text { Q3. } \\ \text { (20 Marks ) } \end{gathered}$ |  |
| A | Solve any Two (5 marks each) |
| i. | Derive the expressions to convert star network to its equivalent delta network. |
| ii. | Draw a no- load phasor diagram of a transformer and explain it. |
| iii. | State and explain the various steps involved in Superposition theorem. |
| B | Solve any One (10marks each) |
| i. | Draw the circuit diagram and phasor diagram for measurement of power in a 3 phase system using Two Wattmeter method. <br> Two wattmeters connected to measure power in a three phase circuit using the two wattmeter method indicate 1250 W and 250 W respectively. Find the total power supplied and the power factor of the circuit: when <br> i) both the readings are positive, <br> ii) when the latter reading is obtained by reversing the connections of the pressure coil. |
| ii. | Derive the expression for resonant frequency of a series RLC circuit. A series RLC circuit has values $\mathrm{R}=10$ ohms, $\mathrm{L}=10 \mathrm{mH}$, and $\mathrm{C}=10$ micro F . It is connected to a 200 V variable frequency supply. Find the resonant frequency? At resonance find, i) current drawn, ii) power consumed, <br> iii) power factor and iv) quality factor. |

## University of Mumbai

Examination 2020 under cluster $\qquad$ (Lead College: $\qquad$ )
Examinations Commencing from $7^{\text {th }}$ January 2021 to 20 ${ }^{\text {th }}$ January 2021
Program: $\qquad$
Curriculum Scheme: Rev 2016
Examination: FE Semester I
Course Code: FEC105 and Course Name: Basic Electrical Engineering
Time: 2 hour
Max. Marks: 80

| Question <br> Number | Correct Option <br> (Enter either 'A' or 'B' or 'C' or <br> 'D' |
| :---: | :---: |
| Q1. | A |
| Q2. | A |
| Q3. | C |
| Q4 | B |
| Q5 | C |
| Q6 | B |
| Q7 | C |
| Q8. | B |
| Q9. | D |
| Q10. | D |
| Q11. | D |
| Q12. | A |
| Q13. | A |
| Q14. | B |
| Q15. | B |
| Q16. | A |
| Q17. | B |
| Q18. | B |
| Q19. | A |
| Q20. | C |
|  |  |
|  |  |

# University of Mumbai <br> Examination 2020 under cluster 3(Lead College: FCRIT) <br> Examinations Commencing from 7 ${ }^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021 

Program: FE (ALL BRANCHES)
Curriculum Scheme: Rev 2016
Examination: FE Semester I
Course Code: FEC104
Course Name: Engineering Mechanics
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | A steel ball is rolled over a horizontal table. It is then allowed to fall freely from the table onto the floor. During its fall the ball will follow |
| Option A: | rectilinear motion |
| Option B: | circular motion |
| Option C: | projectile motion |
| Option D: | sinusoidal motion |
| 2. | An elevator is moving with constant acceleration acquires an upward velocity of 5 $\mathrm{m} / \mathrm{s}$ over a distance of 10 m . If it starts from rest, find the magnitude of the acceleration. |
| Option A: | $2.5 \mathrm{~m} / \mathrm{s}^{2}$ |
| Option B: | $1.25 \mathrm{~m} / \mathrm{s}^{2}$ |
| Option C: | $2 \mathrm{~m} / \mathrm{s}^{2}$ |
| Option D: | $5 \mathrm{~m} / \mathrm{s}^{2}$ |
| 3. | A particle moves along a straight line such that distance ( x ) traversed in t seconds is given by $x=t^{2}(4-t)+7 m$, the acceleration of the particle, at time, $t$, equal to 1 second will be $\mathrm{m} / \mathrm{s}^{2}$ |
| Option A: | 11 |
| Option B: | 5 |
| Option C: | 2 |
| Option D: | 7 |
| 4. | An isosceles triangle has its two equal sides placed along the two axes in the first quadrant. If these side measure 3 m , the coordinates of the centroid of the triangle are |
| Option A: | ( $2 \mathrm{~m}, 2 \mathrm{~m}$ ) |
| Option B: | $(1.33 \mathrm{~m}, 1.33 \mathrm{~m})$ |
| Option C: | ( $1 \mathrm{~m}, 1 \mathrm{~m}$ ) |
| Option D: | ( $2 \mathrm{~m}, 1.33 \mathrm{~m}$ ) |
|  |  |
| 5. | Four forces $25 \mathrm{~N}, 25 \mathrm{~N}, 50 \mathrm{~N}$ and 50 N are acting along with sides LM, MN, NO and OL of a rectangle LMNO. Their resultant force will be inclined at $\qquad$ to the side ON. |
| Option A: | $45^{\circ}$ |


| Option B: | $0^{\circ}$ |
| :---: | :---: |
| Option C: | $15^{\circ}$ |
| Option D: | $30^{\circ}$ |
| 6. | A cricket ball hit in the air by the batsman, with velocity ' $u$ ' inclined with the horizontal with angle ' $\alpha$ ', reaches the boundary in a projectile fashion. Assuming the batsman's height to be zero, the horizontal distance travelled by the ball is given by $\qquad$ |
| Option A: | $\frac{4 u^{2} \sin \alpha}{2 g}$ |
| Option B: | $\frac{2 u^{2} \sin 3 \alpha}{g}$ |
| Option C: | $\frac{u^{2} \sin 2 \alpha}{g}$ |
| Option D: | $\frac{u^{2} \sin \alpha}{2 g}$ |
| 7. | Which one of the following statements is TRUE? |
| Option A: | the tangent of the coefficient of friction is equal to the angle of friction |
| Option B: | the angle of repose is always greater than the angle of friction |
| Option C: | the angle of repose is always less than the angle of friction |
| Option D: | Limiting frictional force is directly proportional to the normal reaction. |
| 8. | A vertical parallel force system has four forces. They are placed one after other with a distance of separation of 1 m each between them. The first force acts upwards and has a magnitude of 100 N , the second force has a magnitude of 200 N and too acts upward. The third and fourth have equal magnitude of 400 N . The third force is acting downwards whereas the fourth one acts upwards. Find the position of the resultant force with respect to the first force. |
| Option A: | 2 m on the left of the first force |
| Option B: | 4 m on the right of the first force |
| Option C: | 2 m on the right of the first force |
| Option D: | 3 m on the right of the first force |
| 9. | A person drops a ball from a height of 1.5 m on a concrete floor. The ball then bounces from the ground vertically upwards and reaches a height of 1 m . The coefficient of restitution in this case is |
| Option A: | 1.2247 |
| Option B: | 0.6667 |
| Option C: | 1.5 |
| Option D: | 0.8165 |
| 10. | A wheel of radius 0.5 m rolls without slipping on a horizontal surface in theh clockwise direction. Determine the velocity of the top-most point, A, of the wheel, when the velocity of the center, C , of the wheel is $8 \mathrm{~m} / \mathrm{sec}$. towards right. |
| Option A: | $14.14 \mathrm{~m} / \mathrm{s}$ |
| Option B: | $16 \mathrm{~m} / \mathrm{s}$ |


| Option C: | $12 \mathrm{~m} / \mathrm{s}$ |
| :---: | :---: |
| Option D: | $18 \mathrm{~m} / \mathrm{s}$ |
| 11. | A 5 kg block travels a distance of 10 m along a smooth horizonal surface. Find the work-done by the weight of the block? |
| Option A: | 0 J |
| Option B: | 50 J |
| Option C: | 490.5 J |
| Option D: | 49.05 J |
| 12. | Three forces are acting at point A . The forces are $\mathrm{P}=150 \mathrm{~N}$ (along the East), $\mathrm{Q}=$ 200 N (along the North) and $\mathrm{S}=150 \mathrm{~N}$ (along the West). Their resultant is |
| Option A: | 200 N acting along the South |
| Option B: | 200 N acting along the North |
| Option C: | 500 N acting along the East-West |
| Option D: | 500 N acting along the North-West |
| 13. | Under the application of which of the following force system body undergoes pure rotational motion? |
| Option A: | Coplanar concurrent force system |
| Option B: | Coplanar parallel force system |
| Option C: | Non-coplanar concurrent force system |
| Option D: | Coplanar non-concurrent non-parallel force system |
| 14. | Which of the following statements is FALSE? |
| Option A: | Magnitude of the moment of a force is obtained by multiplying the magnitude of the force by its shortest distance from the moment centre. |
| Option B: | The moment of a force is a vector quantity. |
| Option C: | The moment of a force is always the same irrespective of the location of the moment centre. |
| Option D: | The magnitude of the moment of a force about a moment centre located along its line of action is always zero. |
| 15. | Two unlike parallel forces A \& B of different magnitudes are acting on a rigid body. Which of the following statements is TRUE? |
| Option A: | The body will be in the pure rotary motion. |
| Option B: | The body will be in the pure translatory motion. |
| Option C: | The body will remain stationary. |
| Option D: | The body will be in the general plane motion. |
| 16. | Two steel balls underwent a direct central impact along a horizontal line. Before the impact, the first ball was travelling at $4 \mathrm{~m} / \mathrm{s}$ towards the right whereas the second was travelling with $3 \mathrm{~m} / \mathrm{s}$ towards the left. After the impact the second ball was found to travel with a velocity of $4 \mathrm{~m} / \mathrm{s}$ towards the right. If the coefficient of restitution is 0.8 , find the velocity of the first ball after the impact. |
| Option A: | $1.6 \mathrm{~m} / \mathrm{s}$ towards left |
| Option B: | $1.6 \mathrm{~m} / \mathrm{s}$ towards right |
| Option C: | $3 \mathrm{~m} / \mathrm{s}$ towards left |
| Option D: | $3 \mathrm{~m} / \mathrm{s}$ towards right |


|  |  |
| :---: | :--- |
| 17. | A body of weight 100 N kept on a rough plane inclined at $10^{\circ}$ with horizontal is at <br> rest. If the coefficient of friction is 0.3, determine the frictional force. |
| Option A: | 29.54 N |
| Option B: | 100 N |
| Option C: | 30 N |
| Option D: | 17.36 N |
|  | Which of the following statements is TRUE about the instantaneous centre of <br> rotation (ICR)? |
| 18. | An ICR always lies within the physical boundary of the rigid body under <br> consideration. |
| Option A: position at all the times. |  |
| Option B: | An ICR has a fixed the |
| Option C: | An ICR travels with some finite linear velocity. |
| Option D: | For a rigid body in general plane motion a point which has a zero linear velocity <br> is knows as an ICR. |
| 19. | A Vertical force of 200 N force is acting at a point A(4,-3). The magnitude of the <br> moment of this force about the origin is |
| Option A: | 600 Nm |
| Option B: | 800 Nm |
| Option C: | 1000 Nm |
| Option D: | 0 Nm |
|  |  |
| 20. | A massless ladder is kept on the rough floor and leans against a rough vertical <br> wall. In this case, the ladder will |
| Option A: | remain in stationary position |
| Option B: | slide downwards along the wall and horizontally along the floor |
| Option C: | rotate about the vertical axis |
| Option D: | rotate about the horizontal axis |
|  |  |


| Q2. | Solve any Two. |
| :---: | :--- |
| $\mathbf{A}$ | When the mechanism of Figure 1 is in the position shown, the angular velocity of <br> bar $A B$ is $3 \mathrm{rad} / \mathrm{s}$ clockwise. Using instantaneous center of rotation, calculate <br> the angular velocity of bar $B C$ and the velocity of slider $C$ for this position. |
|  |  |


|  | Figure 1 |
| :---: | :---: |
|  |  |
| B | Find the reactions at the supports A \& B for the given beam shown in Figure 2. |
|  |  |
| C | Find the centroid of the shaded area shown in Figure 3 with respect to the given reference axes x \& y. |
|  | Figure 3 |


| Q3. | Solve any Two. $\quad$ [10 marks each] |
| :---: | :--- |
| A | The position of a particle that moves along the $x$-axis is given by |


|  | $x=t^{3}-3 t^{2}-45 t \mathrm{~m}$, where $t$ is the time in seconds. Determine the position, <br> velocity, acceleration, and distance traveled at $t=8 \mathrm{~s}$. What time will the <br> particle reverses its direction? What is the corresponding displacement? |
| :---: | :--- |
| B | The horizontal position of the 500 kg rectangular block of concrete, shown <br> in Figure 4, is adjusted by the $5^{\circ}$ wedge under the action of the force P. If <br> the coefficient of static friction for all the surfaces in contact is 0.4, <br> determine the force $P$ required to move the block to the right. |
| C | When in the position shown in Figure 5, the $5-\mathrm{kg}$ box is moving down the <br> inclined plane at a speed of $6 \mathrm{~m} / \mathrm{s}$. What is the compression of the spring <br> when the box comes to rest? The coefficient of kinetic friction between the <br> box and the plane is 0.25, and the spring constant is $k=4000 \mathrm{~N} / \mathrm{m}$. |

## University of Mumbai

Examination 2020 under cluster _RAIT_ (Lead College: $\qquad$ )
Examinations Commencing from $23^{\text {rd }}$ December 2020 to $\mathbf{6}^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Bachelor of Engineering
Curriculum Scheme: Rev 2016
Examination: FE/Semester I
Course Code: FEC104 and Course Name: Engineering Mechanics

## Time: 2 hour

| Question <br> Number | Correct Option <br> (Enter either ' $\mathbf{A}$ ' or ' $B$ ' <br> or ' $C^{\prime}$ or ' $D$ ') |
| :---: | :---: |
| Q1. | C |
| Q2. | B |
| Q3. | C |
| Q4 | C |
| Q5 | A |
| Q6 | C |
| Q7 | D |
| Q8. | C |
| Q9. | D |
| Q10. | B |
| Q11. | A |
| Q12. | B |
| Q13. | B |
| Q14. | C |
| Q15. | D |
| Q16. | A |
| Q17. | D |
| Q18. | D |
| Q19. | B |
| Q20. | A |

## University of Mumbai

## Examination 2020 under cluster 3 (Lead College: FCRIT)

Examinations Commencing from 7 ${ }^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: FE/SEM I/Rev.2016/Dec Jan Examination.
Curriculum Scheme: Rev. 2016
Examination: FE Semester I
Course Code: FEC106 and Course Name: Environmental Studies
Time: 1hour 30 min .
Max. Marks: 60

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks . |
| :---: | :---: |
| 1. | Sustainable development |
| Option A: | Takes care of needs of future and current generations |
| Option B: | Compromises needs of future generation |
| Option C: | Compromises needs of current generation |
| Option D: | Does not takes care of needs of both generations |
| 2. | A food web consist of |
| Option A: | A portion of food chain |
| Option B: | Producer, consumer and decomposers |
| Option C: | Interlocking Food chain |
| Option D: | A set of similar consumers. |
| 3. | Which of the following removes both gaseous and particulate contaminants? |
| Option A: | Ventury Scrubber |
| Option B: | Gravitational settling Chamber |
| Option C: | Dynamic Precipitator |
| Option D: | Wet Scrubber |
| 4. | The process of burning municipal solid wastes under suitable temperature and conditions in a specific furnace is called $\qquad$ |
| Option A: | Landfill |
| Option B: | Incineration |
| Option C: | Recycling |
| Option D: | Vermicomposting |
| 5. | Which of the following river is called the world's most polluted river? |
| Option A: | Ganga River |
| Option B: | Chenab River |
| Option C: | Cauvery River |
| Option D: | Yamuna River |
| 6. | Which of the following is the chief component formed in Photochemical smog? |
| Option A: | Carbon dioxide |
| Option B: | Peroxyacylnitrate |


| Option C: | Chlorofluorocarbon |
| :---: | :---: |
| Option D: | Sulphur dioxide |
| 7. | What is noise? |
| Option A: | Desirable sound |
| Option B: | Desirable and unwanted Sound |
| Option C: | Undesirable and unwanted sound |
| Option D: | Undesirable and wanted sound. |
| 8. | Environmental Protection Act was enacted in India during |
| Option A: | 1986 |
| Option B: | 1984 |
| Option C: | 1994 |
| Option D: | 1987 |
|  |  |
| 9. | CPCB stand for |
| Option A: | Central public control board |
| Option B: | Central pollution control bank |
| Option C: | Central pollution control board |
| Option D: | Central pollution control book |
| 10. | What is called for the phenomenon when the radiation absorbed by the atmosphere is re-radiated towards the surface of the Earth? |
| Option A: | Greenhouse effect |
| Option B: | Darwin effect |
| Option C: | Smog |
| Option D: | Newton effect |
|  |  |
| 11. | Which of the following is a non-renewable energy resource? |
| Option A: | Solar |
| Option B: | Methane |
| Option C: | Hydroelectric |
| Option D: | Coal |
|  |  |
| 12. | Geothermal energy is produced from |
| Option A: | Temperature difference between Earth surface and atmosphere |
| Option B: | Thermal energy from deep below the earth surface |
| Option C: | Temperature difference between Earth surface and oceans |
| Option D: | Thermal energy from ocean |
|  |  |
| 13. | One carbon credit equals to |
| Option A: | One ton of methane |
| Option B: | One ton of carbon dioxide |
| Option C: | One Kg methane |
| Option D: | One Kg of carbon dioxide |
|  |  |
| 14. | Which of the following are the advantages of Green Buildings? |
| Option A: | Use of more water |
| Option B: | Use of more energy |


| Option C: | Increased use of natural resources |
| :---: | :--- |
| Option D: | Use of less water, use of less energy, and reduced use of natural resources. |
|  |  |
| 15. | Disaster management does not includes |
| Option A: | Mitigation |
| Option B: | Reconstruction |
| Option C: | Rehabilitation |
| Option D: | Depletion of soil |
|  |  |


| Q2 | Attempt any THREE from the following. |
| :---: | :--- |
| A | Write a note on Green House Effect. |
| B | With suitable examples explain the concept of food Chain and Food Web. |
| C | Explain in detail the 3Rs namely reduce, Reuse, Recycle as a control <br> measure of sustainability. |
| D | Explain working of hydropower electricity plant with the help of neat <br> sketch. |
| E | Explain what is Indoor Pollution. Give examples and state its ill effects. |


| Q3. | Attempt any THREE from the following. |
| :--- | :--- |
| A | Write a case study on Fukushima Disaster. |
| B | What are the functions of Central Pollution Control Board? |
| C | Explain the concept of Green Building. |
| D | What is water pollution ? Explain sources and effects of water pollution |
| E | What are the limitations of conventional energy sources? |

## University of Mumbai

## Examination 2020 under cluster 3(Lead College: FCRIT)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to 20 ${ }^{\text {th }}$ January 2021
Program: FE/SEM I/Rev.2016/Dec Jan Examination.
Curriculum Scheme: Rev 2016
Examination: FE Semester I
Course Code: FEC106 and Course Name: Environmental Studies
Time: 1 hour 30 min
Max. Marks: 60

| Question <br> Number | Correct Option <br> (Enter either 'A' or 'B' <br> or ' $\mathbf{C}^{\prime}$ or ' $\mathbf{D}$ ') |
| :---: | :---: |
| Q1. | A |
| Q2. | C |
| Q3. | A |
| Q4 | B |
| Q5 | A |
| Q6 | B |
| Q7 | C |
| Q8. | A |
| Q9. | C |
| Q10. | A |
| Q11. | D |
| Q12. | B |
| Q13. | B |
| Q14. | D |
| Q15. | D |

