University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE)

Examinations Commencing from $15^{\text {th }}$ June 2021 to $\mathbf{2 6}^{\text {th }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE Semester: III
Course Code: CSC303 and Course Name: Data Structures
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	To convert the infix expression ($\mathrm{D}+(\mathrm{C}-\mathrm{E})^{*} \mathrm{~F}$) into postfix, how many pop operations will be required?
Option A:	3
Option B:	4
Option C:	5
Option D:	6
2.	What is the operation performed by the following code with respect to Binary search tree, if ' rt ' is pointing to the root node: ```struct node *ptr=rt; struct node *fun(struct node *ptr) { if(ptr==NULL) return NULL; else if(ptr->right==NULL) return ptr; else``` return fun(ptr->right);
Option A:	returns the smallest value in the binary search tree
Option B:	returns the right child of root node
Option C:	Returns the largest value in the binary search tree
Option D:	Returns all right nodes in the binary search tree
3.	Which of the following statements is not correct for queues?
Option A:	Queue is used in process and job scheduling
Option B:	Queue is used in depth first search traversal
Option C:	The last inserted elements is removed at the last from queue
Option D:	Elements in the queue can be removed based on their priority.
4.	The following postfix expression with single digit operands is evaluated using a stack: $23^{\wedge} 4 / 75+* 3 *$ Note that ${ }^{\wedge}$ is the exponentiation operator. The top two elements of the stack after ' + ' is evaluated are:
Option A:	5,7

Option B:	7,4
Option C:	12,8
Option D:	12,2
5.	After performing these set of operations, what will be the contents of a double ended queue? InsertFront(16); InsertRear(33); InsertRear(40); DeleteFront(); InsertRear(25);
Option A:	33,40,25
Option B:	16,33,25
Option C:	16,33,40
Option D:	25,33,40
6.	Which of the following statements about stacks is incorrect?
Option A:	Stacks can be implemented using linked lists
Option B:	Stacks are first-in, first-out (FIFO) data structures
Option C:	New nodes can only be added to the top of the stack
Option D:	The last node (at the bottom) of a stack has a null (0) link
7.	What operation the following pseudo code indicates : ```void func(Queue Q) { if(Q not empty) { int i=delete(Q); func(Q); insert(Q,i); }``` \}
Option A:	Reverses queue elements
Option B:	Keeps queue unchanged
Option C:	Deletes front element from queue
Option D:	Deletes all elements from queue
8.	What is the output of the following code, if linked list contains elements ```16,37,28,49: void fun1(struct Node* head) { if (head == NULL) return; fun1(head->next); printf("->%d", head->data); }```
Option A:	$->16->37->28->49$
Option B:	$->49->28->37->16$
Option C:	$->37->28-.>49->16$
Option D:	$->28->49->37->16$

9.	How many pointers are contained as data members in the nodes of a circular, doubly linked list of integers with seven nodes?
Option A:	7
Option B:	8
Option C:	14
Option D:	15
10.	Which is not the property of Linear data structures?
Option A:	Contiguous allocation
Option B:	Sequential access
Option C:	Static or dynamic allocation
Option D:	Abstract Data type
11.	Consider the DAG with Consider $\mathrm{V}=\{1,2,3,4,5,6\}$, shown below. Which of the following is not a breadth first search sequence for the graph?
Option A:	123456
Option B:	132465
Option C:	132645
Option D:	324165
12.	A binary search tree is created by inserting the numbers $2,6,0,1,9,8,4,7,3,5$. What is the post-order traversal sequence of the resultant tree?
Option A:	0123456789
Option B:	0243165987
Option C:	1035478962
Option D:	1034567892
13.	What the following code do: ptr=head; while(ptr!=NULL) \{ tr=ptr->next->next; \}
Option A:	Traverse list
Option B:	Traverse even position nodes
Option C:	Traverse odd position nodes
Option D:	Deletes odd position nodes
14.	Select the operation performed by the following code segment with respect to binary tree: ```void func(struct Node* p)``` \{


	```if (p == NULL) return; else { struct Node* temp; func(p->left); func(p->right); temp = p->left; p->left = p->right; p->right = temp; } }```
Option A:	find the minimum element in a binary search tree
Option B:	find the maximum element in a binary search tree
Option C:	Interchange of nodes
Option D:	Converts tree into its mirror image
15.	If you insert 75 into the following binary search tree using the algorithm that keeps the tree height-balanced by doing rotations, what tree do you get?
Option A:	Left child of 65
Option B:	Right child of 65
Option C:	Right child of 40
Option D:	Left child of 80
16.	How many nodes will be created in a B-tree by inserting the keys 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5) ?
Option A:	4
Option B:	5
Option C:	6
Option D:	7
17.	Which of the following statement is incorrect with respect to graphs?
Option A:	A sequence of vertices that connect two nodes in a graph is called a path.
Option B:	Degree of vertex in a graph is the number of edges that touch it.
Option C:	A tree is a graph with cycles.
Option D:	In complete graph, every vertex is directly connected to every other vertex
18.	What is the worst case for linear search?
Option A:	Search key is available at first location
Option B:	Search key is available at last location
Option C:	Search key is available at middle of array
Option D:	Search key is available anywhere in the array


19.	In a Doubly linked list with 2 pointers namely, 'prev' and 'next', and a pointer   'Temp' pointing to some node except first or last node, which of the following   statement will delete the element pointed by 'Temp'?
Option A:	Temp->prev->next=Temp->next; Temp->next->prev=Temp->prev; free(temp);
Option B:	Temp->prev->next=Temp->prev; Temp->next->prev=Temp->next; free(temp);
Option C:	Temp->prev->prev=Temp->next; Temp->next->next=Temp->prev; free(temp);
Option D:	Temp->prev->prev=Temp->prev; Temp->next->next=Temp->next; free(temp);
20.	Max .no. of nodes in a binary tree with level 6 are
Option A:	32
Option B:	63
Option C:	64
Option D:	31


Q2	Solve any Four out of Six 5 marks each
A	Consider marks of 5 subjects of a student represented as singly linked list. Write a C program to compute the total and percentage of the student.
B	An array contains the elements - $8,13,17,26,44,56,88,97$   Using binary search algorithm, trace the steps followed to find numbers $56 \& 9$. At each step, show the contents of low, high \& mid and array after each iteration
C	Create a Binary Search Tree for the following sequence and write all the 3 traversal sequences from resultant BST: $45,39,56,12,34,78,32,10,89,54,67,81 .$
D	Use linear probing, insert the following keys in a hash table of size 11: 15,85,90,54,67,43,76.   Find the number of collisions.
E	Illustrate topological sorting for the following graph:
F	Define circular queue. Assume a circular queue with a capacity 6, currently having the elements 50 and 70 at locations 2 and 3 respectively. Show with example, the queue full and queue empty conditions by performing necessary operations on circular queue.


Q3.	Solve any Two Questions out of Three				10 marks each
A	Create a AVL tree for the sequence:   I, N, F, O, R, M, A, T, G.   Consider the characters to arrange in alphabetic sequence.   Show the tree after each insertion with balance factors.				
B	Given the following frequencies for characters, find the Huffman code for all the   characters:   Character	S	T		


	Frequency	9	16	2	30	12

## University of Mumbai

## Examination 2020 under cluster 4 (Lead College: PCE)

Examinations Commencing from $15^{\text {th }}$ June 2021 to $26^{\text {th }}$ June 2021
Program: COMPUTER ENGINEERING
Curriculum Scheme: Rev2019
Examination: SE Semester III
Course Code: CSC303 and Course Name: DATA STRUCTURE

Question   Number	Correct Option   (Enter either 'A' or ' $\mathbf{B}$ '   or ' $\mathbf{C}^{\prime}$ or ' $\mathbf{D}$ ')
Q1.	C
Q2.	C
Q3.	B
Q4	D
Q5	A
Q6	B
Q7	B
Q8.	B
Q9.	C
Q10.	A
Q11.	D
Q12.	C
Q13.	B
Q14.	D
Q15.	D
Q16.	A
Q17.	C
Q18.	B
Q19.	A
Q20.	B






| Q3. <br> (20 <br> Earks |
| :--- | :--- | :--- |
| Each) | Solve any Two Questions out of Three 10 marks each

Insert M:


