University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE)

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester: III

Course Code: CSC303 and Course Name: Data Structures

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks							
1.	To convert the infix expression $(D+(C-E)*F)$ into postfix, how many pop operations will be required?							
Option A:	3							
Option B:	4							
Option C:	5							
Option D:	6							
2.	What is the operation performed by the following code with respect to Binary							
	search tree, if 'rt' is pointing to the root node:							
	<pre>struct node *ptr=rt;</pre>							
	struct node *fun(struct node *ptr)							
	if(ptr==NULL)							
	return NULL; else if(ptr->right==NULL)							
	return ptr;							
	else							
	return fun(ptr->right);							
Option A:	returns the smallest value in the binary search tree							
Option B:	returns the right child of root node							
Option C:	Returns the largest value in the binary search tree							
Option D:	Returns all right nodes in the binary search tree							
3.	Which of the following statements is not correct for queues?							
Option A:	Queue is used in process and job scheduling							
Option B:	Queue is used in depth first search traversal							
Option C:	The last inserted elements is removed at the last from queue							
Option D:	Elements in the queue can be removed based on their priority.							
4.	The following postfix expression with single digit operands is evaluated using a stack: $23^{4}/75 + 3*$							
	Note that $^{\text{is the exponentiation operator.}}$ The top two elements of the stack after $^{+2}$ is evaluated are:							
Ontion A:	+' is evaluated are:							
Option A:	5,7							

Option B:	7,4
Option D:	12,8
Option D:	12,8
Option D.	
5.	After performing these set of operations, what will be the contents of a double ended queue?
	InsertFront(16);
	<pre>InsertRear(33);</pre>
	<pre>InsertRear(40);</pre>
	<pre>DeleteFront();</pre>
	<pre>InsertRear(25);</pre>
Option A:	33,40,25
Option B:	16,33,25
Option C:	16,33,40
Option D:	25,33,40
6.	Which of the following statements about stacks is incorrect?
Option A:	Stacks can be implemented using linked lists
Option B:	Stacks are first-in, first-out (FIFO) data structures
Option C:	New nodes can only be added to the top of the stack
Option D:	The last node (at the bottom) of a stack has a null (0) link
7.	What operation the following pseudo code indicates :
	void func(Queue Q)
	{
	if(Q not empty) {
	<pre>int i=delete(Q);</pre>
	func(Q);
	<pre>insert(Q,i); }</pre>
Omtion A.	}
Option A:	Reverses queue elements
Option B:	Keeps queue unchanged
Option C:	Deletes front element from queue
Option D:	Deletes all elements from queue
0	
8.	What is the output of the following code, if linked list contains elements
	16,37,28,49: void fun1(struct Node* head)
	void full(struct Node* nead)
	if (head == NULL)
	return;
	<pre>fun1(head->next);</pre>
	<pre>printf("->%d", head->data);</pre>
	}
Option A:	->16->37->28->49
Option B:	->49->28->37->16
Option C:	->37->28>49->16
Option D:	->28->49->37->16
c puon D.	
L	

9.	How many pointers are contained as data members in the nodes of a circular,
	doubly linked list of integers with seven nodes?
Option A:	7
Option B:	8
Option C:	14
Option D:	15
1	
10.	Which is not the property of Linear data structures ?
Option A:	Contiguous allocation
Option B:	Sequential access
Option C:	Static or dynamic allocation
Option D:	Abstract Data type
11.	Consider the DAG with Consider $V = \{1, 2, 3, 4, 5, 6\}$, shown below. Which of the following is not a breadth first search sequence for the graph?
Option A:	123456
Option B:	132465
Option C:	1 3 2 6 4 5
Option D:	324165
12.	A binary search tree is created by inserting the numbers 2, 6, 0, 1, 9, 8, 4, 7, 3, 5.
	What is the post-order traversal sequence of the resultant tree?
Option A:	0123456789
Option B:	0243165987
Option C:	1035478962
Option D:	1034567892
10	
13.	What the following code do:
	ptr=head;
	while(ptr!=NULL) {
	tr=ptr->next->next; }
Option A:	Traverse list
Option B:	Traverse even position nodes
Option C:	Traverse odd position nodes
Option D:	Deletes odd position nodes
14.	Select the operation performed by the following code segment with respect to binary tree:
	void func(struct Node* p) {

	if (p == NULL)
	return;
	else
	{
	struct Node* temp;
	<pre>func(p->left);</pre>
	<pre>func(p->right);</pre>
	temp = p->left;
	p->left = p->right;
	p->right = temp;
	}
	}
Option A:	find the minimum element in a binary search tree
Option B:	find the maximum element in a binary search tree
Option C:	Interchange of nodes
Option D:	Converts tree into its mirror image
•	
15.	If you insert 75 into the following binary search tree using the algorithm that
	keeps the tree height-balanced by doing rotations, what tree do you get?
	60
	40 (70)
	40 10
	25 65 80
Ontion A:	25 65 80
Option A:	25 65 80 Left child of 65
Option B:	25 65 80 Left child of 65 Right child of 65
Option B: Option C:	25 65 80 Left child of 65 Right child of 65 Right child of 40
Option B:	25 65 80 Left child of 65 Right child of 65
Option B: Option C: Option D:	25 65 80 Left child of 65 Right child of 65 Right child of 40 Left child of 80
Option B: Option C:	25 65 80 Left child of 65 Right child of 65 Right child of 40 Left child of 80 How many nodes will be created in a B-tree by inserting the keys :
Option B: Option C: Option D: 16.	25 65 80 Left child of 65 80 Right child of 65 1 Right child of 40 1 Left child of 80 1 How many nodes will be created in a B-tree by inserting the keys : 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5) ? 1
Option B: Option C: Option D: 16. Option A:	25 65 80 Left child of 65 Right child of 65 Right child of 40 Left child of 80 How many nodes will be created in a B-tree by inserting the keys : 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5)? 4
Option B: Option C: Option D: 16. Option A: Option B:	25 65 80 Left child of 65 Right child of 65 Right child of 40 Left child of 80 How many nodes will be created in a B-tree by inserting the keys : 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5)? 4 5
Option B: Option C: Option D: 16. Option A: Option B: Option C:	25 65 80 Left child of 65 Right child of 65 Right child of 40 Left child of 80 How many nodes will be created in a B-tree by inserting the keys : 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5) ? 4 5 6
Option B: Option C: Option D: 16. Option A: Option B:	25 65 80 Left child of 65 Right child of 65 Right child of 40 Left child of 80 How many nodes will be created in a B-tree by inserting the keys : 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5)? 4 5
Option B: Option C: Option D: 16. Option A: Option B: Option C: Option D:	25 65 80 Left child of 65 Right child of 65 Right child of 40 Left child of 80 How many nodes will be created in a B-tree by inserting the keys : 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5) ? 4 5 6 7
Option B: Option C: Option D: 16. Option A: Option A: Option B: Option C: Option D: 17.	Left child of 65 Right child of 65 Right child of 40 Left child of 80 How many nodes will be created in a B-tree by inserting the keys : 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5) ? 4 5 6 7 Which of the following statement is incorrect with respect to graphs?
Option B: Option C: Option D: 16. Option A: Option B: Option C: Option D: 17. Option A:	256580Left child of 65Right child of 65Right child of 40Left child of 80How many nodes will be created in a B-tree by inserting the keys :11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5)?4567Which of the following statement is incorrect with respect to graphs?A sequence of vertices that connect two nodes in a graph is called a path.
Option B: Option C: Option D: 16. Option A: Option B: Option C: Option D: 17. Option A: Option B:	25 65 80 Left child of 65 Right child of 65 Right child of 40 Left child of 80 How many nodes will be created in a B-tree by inserting the keys : 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5) ? 4 5 6 7 Which of the following statement is incorrect with respect to graphs? A sequence of vertices that connect two nodes in a graph is called a path. Degree of vertex in a graph is the number of edges that touch it.
Option B: Option C: Option D: 16. Option A: Option B: Option C: Option D: 17. Option A: Option A: Option B: Option C:	25 65 80 Left child of 65 Right child of 65 Right child of 40 Left child of 80 How many nodes will be created in a B-tree by inserting the keys : 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5) ? 4 5 6 7 Which of the following statement is incorrect with respect to graphs? A sequence of vertices that connect two nodes in a graph is called a path. Degree of vertex in a graph is the number of edges that touch it. A tree is a graph with cycles.
Option B: Option C: Option D: 16. Option A: Option B: Option C: Option D: 17. Option A: Option B:	25 65 80 Left child of 65 Right child of 65 Right child of 40 Left child of 80 How many nodes will be created in a B-tree by inserting the keys : 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5) ? 4 5 6 7 Which of the following statement is incorrect with respect to graphs? A sequence of vertices that connect two nodes in a graph is called a path. Degree of vertex in a graph is the number of edges that touch it.
Option B: Option C: Option D: 16. Option A: Option B: Option C: Option D: 17. Option A: Option A: Option B: Option C: Option C: Option D:	25 65 80 Left child of 65 Right child of 65 Right child of 40 Left child of 80 How many nodes will be created in a B-tree by inserting the keys : 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5) ? 4 5 6 7 Which of the following statement is incorrect with respect to graphs? A sequence of vertices that connect two nodes in a graph is called a path. Degree of vertex in a graph is the number of edges that touch it. A tree is a graph with cycles. In complete graph, every vertex is directly connected to every other vertex
Option B: Option C: Option D: 16. Option A: Option B: Option C: Option D: 17. Option A: Option A: Option B: Option C: Option D: 18.	25 65 80 Left child of 65 Right child of 65 Right child of 40 Left child of 80 How many nodes will be created in a B-tree by inserting the keys : 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5) ? 4 5 6 7
Option B: Option C: Option D: 16. Option A: Option B: Option C: Option D: 17. Option A: Option B: Option B: Option C: Option D: 18. Option A:	25 65 80 Left child of 65 Right child of 65 Right child of 40 Left child of 80 How many nodes will be created in a B-tree by inserting the keys : 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5) ? 4 5 6 7
Option B: Option C: Option D: 16. Option A: Option B: Option C: Option D: 17. Option A: Option B: Option C: Option D: 18. Option A: Option A: Option B:	256580Left child of 65Right child of 40Left child of 40Left child of 80How many nodes will be created in a B-tree by inserting the keys :11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5) ?4567Which of the following statement is incorrect with respect to graphs?A sequence of vertices that connect two nodes in a graph is called a path.Degree of vertex in a graph is the number of edges that touch it.A tree is a graph with cycles.In complete graph, every vertex is directly connected to every other vertexWhat is the worst case for linear search?Search key is available at first locationSearch key is available at last location
Option B: Option C: Option D: 16. Option A: Option A: Option C: Option A: Option A: Option B: Option C: Option C: Option D: 18. Option A:	25 65 80 Left child of 65 Right child of 65 Right child of 40 Left child of 80 How many nodes will be created in a B-tree by inserting the keys : 11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5) ? 4 5 6 7

19.	In a Doubly linked list with 2 pointers namely, 'prev' and 'next', and a pointer								
	'Temp' pointing to some node except first or last node, which of the following								
	statement will delete the element pointed by 'Temp'?								
Option A:	Temp->prev->next=Temp->next; Temp->next->prev=Temp->prev; free(temp);								
Option B:	Temp->prev->next=Temp->prev; Temp->next->prev=Temp->next; free(temp);								
Option C:	Temp->prev->prev=Temp->next; Temp->next->next=Temp->prev; free(temp);								
Option D:	Temp->prev->prev=Temp->prev; Temp->next->next=Temp->next; free(temp);								
20.	Max .no. of nodes in a binary tree with level 6 are								
Option A:	32								
Option B:	63								
Option C:	64								
Option D:	31								

Q2	Solve any Four out of Six5 marks each						
А	Consider marks of 5 subjects of a student represented as singly linked list. Write a C program to compute the total and percentage of the student.						
В	An array contains the elements – 8,13,17,26,44,56,88,97. Using binary search algorithm, trace the steps followed to find numbers 56 & 9. At each step, show the contents of low, high & mid and array after each iteration						
С	Create a Binary Search Tree for the following sequence and write all the 3 traversal sequences from resultant BST: 45,39,56,12,34,78,32,10,89,54,67,81.						
D	Use linear probing, insert the following keys in a hash table of size 11: 15,85,90,54,67,43,76. Find the number of collisions.						
Е	Illustrate topological sorting for the following graph:						
F	Define circular queue. Assume a circular queue with a capacity 6, currently having the elements 50 and 70 at locations 2 and 3 respectively. Show with example, the queue full and queue empty conditions by performing necessary operations on circular queue.						

Q3.	Solve any Two (10 ma	rks each					
А	Create a AVL tree for the sequence: I, N, F, O, R, M, A, T, G. Consider the characters to arrange in alphabetic sequence. Show the tree after each insertion with balance factors.							
В	characters:	Given the following frequencies for characters, find the Huffman code for all the						

	Frequency	9	16	2	30	12	
			•				
С	Define recursion. D to check whether a s						1 0

University of Mumbai Examination 2020 under cluster 4 (Lead College: PCE) Examinations Commencing from 15th June 2021 to 26th June 2021 Program: COMPUTER ENGINEERING Curriculum Scheme: Rev2019 Examination: SE Semester III Course Code: CSC303 and Course Name: DATA STRUCTURE

Time: 2 hour

Max. Marks: 80 _____

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	С
Q3.	В
Q4	D
Q5	А
Q6	В
Q7	В
Q8.	В
Q9.	С
Q10.	А
Q11.	D
Q12.	С
Q13.	В
Q14.	D
Q15.	D
Q16.	А
Q17.	С
Q18.	В
Q19.	А
Q20.	В

02	Solve any Four out of Six 5 marks each
Q2 (20 Marks	
Each)	
A	Consider marks of 5 subjects of a student represented as singly linked list. Write a C program to compute the total and percentage of the student. Node / Variables declaration: 1 Mark Program logic and functions: 4 Marks
	An array contains the elements – 8,13,17,26,44,56,88,97. Using binary search algorithm, trace the steps followed to find numbers 56 & 9. At each step, show the contents of low, high & mid and array after each iteration i) Item to be searched=56 Initial 10° mid high Array 0 1 2 3 4 5 6 7 Low=0; high=7; mid=3; a[mid]=a[3]=26 26 < 56, Step1 8 13 17 26 44 56 88 97 0 1 2 3 4 5 6 7 Low=mid+1=4; high=7; mid=5; a[mid]=a[5]=56 Item is found, so return location 5.
В	ii) Item to be searched=9
	Initial Array low mid high 0 13 17 26 44 56 88 97 0 1 2 3 4 5 6 7
	Low=0; high=7; mid=3; a[mid]=a[3]=26 26 > 9, low mid high
	low mid high Step1 8 13 17 26 44 56 88 97 0 1 2 3 4 5 6 7
	low=0; high=mid-1=2; mid=1; a[mid]=a[1]=13 13 > 9, low,
	mid, high 8 13 17 26 44 56 88 97

				2				
				teps corre s expecte		removing	g nodes and	adding in the
	In-deg ree	Vertex 0 0	Vertex 1 1	Vertex 2 2	Vertex 3 3	Vertex 4 1	Output Sequence 0	Action Delete Vertex 0 & update
		-	0	2	2	0	0,1	in-degrees Delete Vertex 1 & update in-degrees
		-	-	1	1	0	0,1,4	Delete Vertex 4 & update in-degrees
		-	-	1	0	-	0,1,4,3	Delete Vertex 3 & update in-degrees
	Topologi	f 4 is cons cal order	sidered b • is: 0,4,1,	efore 1 in ,3,2			e oder chan	
F	the eleme queue ful circular c Definitio Initial qu Mark Queue fu	ents 50 an 1 and que <u>jueue.</u> n of circu ieue stati	d 70 at lo ue empty ular queu us with fr ation with	cations 2 condition re: 2 Ma ront and r h insertio	and 3 resp as by perfo arks rear poin on operation	pectively. prming ne	Show with e cessary oper rial represe 1ark	

Q3.	Solve any Two Questions out of Three10 marks each
(20 Marks	
Each)	
	Create a AVL tree for the sequence: I, N, F, O, R, M, A, T, G. Consider the characters to arrange in alphabetic sequence. Show the tree after each insertion with balance factors. Insert I: 1 Insert N: 1 Insert F: 1 Insert F: 1 Insert O: 1 Insert R: 1 Insert R: 1 Insert R: 1
	$(F) (N) = RR \qquad \longrightarrow \qquad F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$

