University of Mumbai

Examination 2020 under cluster __(Lead College: \qquad
Examinations Commencing from 15^{h} June to $\mathbf{2 6}^{\text {th }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE Semester III
Course Code: CSC304 and Course Name: Digital Logic and Computer Architecture
Time: 2 hour
Max. Marks: 80

Q1. 40 marks	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks (2marks each)
1.	Convert hexadecimal number (8A9.B4) to binary equivalent.
Option A:	$(100010101001.110101)_{2}$
Option B:	$(100010101011.101101)_{2}$
Option C:	$(100010101001.101101)_{2}$
Option D:	$(100010101001.101011)_{2}$
2.	Write equivalent binary number for 10101010 gray code
Option A:	11001100
Option B:	10001100
Option C:	11000100
Option D:	11001110
3.	Which of the following the correct expression for two input NOR Gate
Option A:	A+ B
Option B:	A. B
Option C:	$\overline{\mathrm{A}+\overline{\mathrm{B}}}$
Option D:	$\overline{\mathrm{A}+\mathrm{B}}$
4.	Program Counter Holds
Option A:	The Instruction
Option B:	The Data
Option C:	Address of the Current Instruction which is executed
Option D:	Address of the Next Instruction to be fetched
5.	Perform binary subtraction using 2's complement representation. 23 - 48 (use 8 bit representation)
Option A:	10001110
Option B:	11110111
Option C:	11100111
Option D:	11001001
Option A:	41766666 H
Option B:	C 170000 H

Option C:	41780006H
Option D:	41780000 H
7.	In Booths Algorithm in one of the step the $\mathrm{A}=0110 \mathrm{Q}=1100 \quad \mathrm{Q}_{-1}=0$ and count is not zero what it will be the result of Arithmetic Right shift A, $\mathrm{Q}, \mathrm{Q}_{-1}$
Option A:	001101100
Option B:	001101101
Option C:	001101110
Option D:	111101100
8.	Perform hexadecimal addition 2F8 + 5A3
Option A:	79B
Option B:	9 AB
Option C:	96B
Option D:	89B
9.	Choose correct equation of carry of full adder
Option A:	A OR B AND C in (A XOR B)
Option B:	A AND B OR C in (A XOR B)
Option C:	A AND B AND C ${ }_{\text {in }}$
Option D:	A OR B OR C ${ }_{\text {in }}$
10.	Which method of combination circuit implementation is widely adopted with maximum output functions and minimum requirement of ICs?
Option A:	Multiplexer Method
Option B:	Decoder Method
Option C:	Encoder Method
Option D:	Full Adder
11.	The addressing mode used in an instruction of the form ADD AX, 07 h is addressing mode
Option A:	Direct
Option B:	Indirect
Option C:	Immediate
Option D:	Register
12.	State table method is the method for designing
Option A:	Microprogram Control unit
Option B:	Hardwired Control Unit
Option C:	Memory Unit
Option D:	I/O devices
13.	Basic task for control unit is
Option A:	to perform logical operations
Option B:	to perform execution
Option C:	to initiate the resources
Option D:	to decode instructions and generate control signal
14.	Which is not true about Register memory
Option A:	fastest possible access

Option B:	only hundreds of bytes in size	
Option C:	Large in Capacity	
Option D:	Part of the processor	
15.	Cache memory is implemented using	
Option A:	Dynamic RAM	
Option B:	Static RAM	
Option C:	EPROM	
Option D:	PROM	
16.	Match the memory type with respective erasing mechanism used	
	Memory Type	Erasing Mechanism
	1- ROM \& PROM	a- Electrically, Byte-level
	2-EPROM	b- Electrically, Block-level
	3- EEPROM	c- UV light, Chip Level
	4- Flash Memory	d- Not Possible
Option A:	1-c, 2-d, 3-b, 4-a	
Option B:	1-d, 2-a, 3-c, 4-b	
Option C:	1-d, 2-b, 3-a, 4-c	
Option D:	1-d, $2-\mathrm{c}, 3-\mathrm{a}, 4-\mathrm{b}$	
17.	In a Pipelined Processing System The Instruction $\quad \mathrm{A} \leftarrow 3+\mathrm{A} \quad \mathrm{B} \leftarrow 4 \times \mathrm{A}$ Leads \qquad Hazard	
Option A:	Resource Hazard	
Option B:	Structural Hazard	
Option C:	Data Hazard	
Option D:	Branch Hazard	
18.	Which is not true about Instruction Pipelining	
Option A:	It will improve system performance in terms of throughput.	
Option B:	Pipeline rate limited by slowest pipeline stage	
Option C:	Unbalanced lengths of pipe stages reduces speedup	
Option D:	Pipelining will not be affected by branching instruction.	
19.	Flynn's taxonomy classifies computer architectures based on	
Option A:	the number of instructions that can be executed	
Option B:	how they operate on data.	
Option C:	the number of instructions that can be executed and how they operate on data.	
Option D:	None of the Above	
20.	We can expand the processor bus connection by using	
Option A:	SCSI bus	
Option B:	PCI bus	
Option C:	Controllers	
Option D:	Multiple bus	

Q2. (20 Marks)	Solve any Four out of Six (5 marks each)
A	Differentiate between Computer Organization and Architecture with a example
B	Describe the detailed Von-Neumann Model with a neat block diagram
C	Explain any five addressing Modes with examples
D	Write Short Note on SR Flip Flop
E	Explain Hardwired control unit design method (state table method)
F	Differentiate between Hardwired control unit and Micro programmed control unit

Q3. (20 Marks)	Solve any two
A	Consider a Cache memory of 16 words. Each block consists of 4 words. Size of the main memory is 128 bytes. Draw the Associative Mapping and Calculate the TAG and WORD size.
B	Draw the flow chart of Booths algorithm for signed multiplication and Perform -7 $\mathrm{x}-3$ using booths algorithm
C	Write short note on Flynn's classification

University of Mumbai

Examination 2020 under cluster __(Lead College: \qquad)
Examinations Commencing from $15^{\text {h }}$ June to $\mathbf{2 6}^{\text {th }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE Semester III
Course Code: CSC304 and Course Name: Digital Logic and Computer Architecture
Time: 2 hour
Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or ' \mathbf{B} or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	C
Q2.	A
Q3.	D
Q4	D
Q5	C
Q6	D
Q7	A
Q8.	D
Q9.	B
Q10.	B
Q11.	C
Q12.	B
Q13.	D
Q14.	C
Q15.	B
Q16.	D
Q17.	C
Q18.	D
Q19.	C
Q20.	B

Note: The distribution of marks the for the descriptive questions is given below for your illustration. Examiners may vary with this and add additional criteria's for evaluation

Q2:
A. For difference 3 marks and example 2 marks
B. Von-Neumann Model block diagram 2 marks and explanation 3 marks
C. For every addressing with block representation or explanation and example allot 1 marks
D. SR Flip Flop diagram 1 mark truth table 1 mark operation 2 mark and draw back 1 mark
E. Explanation of hardwired control unit and state table method 4 marks block diagram 1 mark
F. For every difference allot 1 marks

Q3.
B. Flow chart and explanation 4 marks for numerical 6 marks.
C. Introduction to parallel processing and Flynn's classification 2 marks \& explanation to each classification with block diagram and example 8 marks(2 marks for each type)

