University of Mumbai

Examination 2020 under cluster __(Lead College: _____

Examinations Commencing from 15^h June to 26th June 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: CSC304 and Course Name: Digital Logic and Computer Architecture

Time: 2 hour

Max. Marks: 80

)

_

Q1. 40 marks	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks (2marks each)	
1.	Convert hexadecimal number (8A9.B4) to binary equivalent.	
Option A:	$(100010101001 110101)_{2}$	
Option B:	$(100010101011.101101)_{2}$	
Option C:	$(1000101001.101101)_2$	
Option D:	$(1000101001.101011)_2$	
2.	Write equivalent binary number for 10101010 gray code	
Option A:	11001100	
Option B:	10001100	
Option C:	11000100	
Option D:	11001110	
3.	Which of the following the correct expression for two input NOR Gate	
Option A:	A + B	
Option B:	A . B	
Option C:	$\overline{A} + \overline{B}$	
Option D:	$\overline{A+B}$	
4.	Program Counter Holds	
Option A:	The Instruction	
Option B:	The Data	
Option C:	Address of the Current Instruction which is executed	
Option D:	Address of the Next Instruction to be fetched	
5.	Perform binary subtraction using 2's complement representation. 23 - 48 (use 8	
	bit representation)	
Option A:	10001110	
Option B:	11110111	
Option C:	11100111	
Option D:	11001001	
6.	Write number (15.5)10 in IEEE754 format	
Option A:	41766666H	
Option B:	С170000Н	

Option C:	41780006Н	
Option D:	41780000H	
•		
7.	In Booths Algorithm in one of the step the A=0110 Q=1100 $Q_1=0$ and count is	
	not zero what it will be the result of Arithmetic Right shift A.O. O.	
Option A:	001101100	
Option B [.]	001101101	
Option C ⁻	001101110	
Option D [.]	111101100	
8.	Perform hexadecimal addition 2F8 + 5A3	
Option A [.]	79B	
Option B:	9AB	
Option C:	96B	
Option D ⁻	89B	
ephon D.		
9.	Choose correct equation of carry of full adder	
Option A [.]	A OR B AND C: (A XOR B)	
Option B:	A AND B OR C: (A XOR B)	
Option C:	A AND B AND C.	
Option D:	A OR B OR C	
option D.		
10	Which method of combination circuit implementation is widely adopted with	
10.	maximum output functions and minimum requirement of ICs?	
Option A [.]	Multiplexer Method	
Option B:	Decoder Method	
Option C [.]	Encoder Method	
Option D:	Full Adder	
11.	The addressing mode used in an instruction of the form ADD AX, 07h is	
	addressing mode	
Option A:	Direct	
Option B:	Indirect	
Option C:	Immediate	
Option D:	Register	
• • •		
12.	State table method is the method for designing	
Option A:	Microprogram Control unit	
Option B:	Hardwired Control Unit	
Option C:	Memory Unit	
Option D:	I/O devices	
13.	Basic task for control unit is	
Option A:	to perform logical operations	
Option B:	to perform execution	
Option C:	to initiate the resources	
Option D:	to decode instructions and generate control signal	
14.	Which is not true about Register memory	
Option A:	fastest possible access	

Option B:	only hundreds of bytes in size			
Option C:	Large in Capacity			
Option D:	Part of the processor			
15.	Cache memory is implemented using	Cache memory is implemented using		
Option A:	Dynamic RAM			
Option B:	Static RAM			
Option C:	EPROM			
Option D:	PROM			
16.	Match the memory type with respec	tive erasing mechanism used		
	Memory Type	Erasing Mechanism		
	1- ROM & PROM	a- Electrically, Byte-level		
	2-EPROM	b- Electrically, Block-level		
	3- EEPROM	c- UV light, Chip Level		
	4- Flash Memory	d- Not Possible		
Option A:	1 - c, 2 - d, 3 - b, 4 - a			
Option B:	1 - d, 2 - a, 3 - c, 4 – b			
Option C:	1 - d, 2 - b, 3 - a, 4 - c			
Option D:	1 - d, 2 - c, 3 - a, 4 - b			
17.	In a Pipelined Processing System The Instruction $A \leftarrow 3 + A$ $B \leftarrow 4 \times A$ LeadsHazard			
Option A:	Resource Hazard			
Option B:	Structural Hazard			
Option C:	Data Hazard			
Option D:	Branch Hazard			
18.	Which is not true about Instruction P	Ipelining		
Option A:	It will improve system performance	in terms of throughput.		
Option B:	Pipeline rate limited by slowest pipe	Pipeline rate limited by slowest pipeline stage		
Option C:	Dinalining will not be offected by her	auces speedup		
Option D.	Pipenning will not be affected by bia			
19	Flynn's taxonomy classifies compute	er architectures based on		
Option A [.]	the number of instructions that can b	e executed		
Option B:	how they operate on data.			
Option C:	the number of instructions that can b	e executed and how they operate on data.		
Option D:	None of the Above			
20.	We can expand the processor bus co	nnection by using		
Option A:	SCSI bus	SCSI bus		
Option B:	PCI bus			
Option C:	Controllers			
Option D:	Multiple bus			

Q2.	Solve any Four out of Six (5 marks each)	
(20 Marks)		
А	Differentiate between Computer Organization and Architecture with a example	
В	Describe the detailed Von-Neumann Model with a neat block diagram	
С	Explain any five addressing Modes with examples	
D	Write Short Note on SR Flip Flop	
Е	Explain Hardwired control unit design method (state table method)	
F	Differentiate between Hardwired control unit and Micro programmed control unit	

Q3.	Solve any two10 marks each
(20 Marks)	
А	Consider a Cache memory of 16 words. Each block consists of 4 words.
	Size of the main memory is 128 bytes. Draw the Associative Mapping and
	Calculate the TAG and WORD size.
В	Draw the flow chart of Booths algorithm for signed multiplication and
	Perform -7 x -3 using booths algorithm
С	Write short note on Flynn's classification

University of Mumbai Examination 2020 under cluster __(Lead College: _____) Examinations Commencing from 15^h June to 26th June 2021 Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: SE Semester III Course Code: CSC304 and Course Name: Digital Logic and Computer Architecture Time: 2 hour Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	А
Q3.	D
Q4	D
Q5	С
Q6	D
Q7	А
Q8.	D
Q9.	В
Q10.	В
Q11.	С
Q12.	В
Q13.	D
Q14.	С
Q15.	В
Q16.	D
Q17.	С
Q18.	D
Q19.	С
Q20.	В

Note: The distribution of marks the for the descriptive questions is given below for your illustration. Examiners may vary with this and add additional criteria's for evaluation

Q2:

- A. For difference 3 marks and example 2 marks
- B. Von-Neumann Model block diagram 2 marks and explanation 3 marks
- C. For every addressing with block representation or explanation and example allot 1 marks
- D. SR Flip Flop diagram 1 mark truth table 1 mark operation 2 mark and draw back 1 mark
- E. Explanation of hardwired control unit and state table method 4 marks block diagram 1 mark
- F. For every difference allot 1 marks

Q3.

- B. Flow chart and explanation 4 marks for numerical 6 marks.
- C. Introduction to parallel processing and Flynn's classification 2 marks & explanation to each classification with block diagram and example 8 marks(2 marks for each type)