University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from $15^{\text {th }}$ June 2021 to $\mathbf{2 6}^{\text {th }}$ June2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE SemesterIII
Course Code:CSC302 and Course Name: Discrete Structures and Graph Theory
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The binary relation $\{(1,1),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2)\}$ on the set $\{1,2$, $3,4\}$ is
Option A:	Reflexiive, Symmetric and Transitive
Option B:	Irreflexive, Symmetric and Transitive
Option C:	Neither Reflexiive, nor Irreflexive but Transitive
Option D:	Irreflexive and Antisymmetric
2.	Given the following statements pick the one that is not a tautology?
Option A:	$(p \rightarrow q) \rightarrow q$
Option B:	$p \rightarrow(p \vee q)$
Option C:	$(p \wedge q) \rightarrow(p \rightarrow q)$
Option D:	$(p \wedge q) \rightarrow(p \vee q)$
3.	Given the set $\{1,2,3,4\}$ How many numbers must be selected from it to guarantee that at least one pair of these numbers add up to $7 ?$
Option A:	14
Option B:	5
Option C:	9
Option D:	24
4.	All Isomorphic graph must have
Option A:	cyclic
Option B:	tree
Option C:	adjacency list
Option D:	adjacency matrix
5.	The cardinality of the set of odd positive integers less than 10 is ?
Option A:	5
Option B:	10
Option C:	3
Option D:	20
O.	If $\mathrm{g}(\mathrm{x})=3 \mathrm{x}+2$ then gog $(\mathrm{x}):$
Option A:	6 x 4
Option B:	$9 \mathrm{x}+8$
Option C:	$3 \mathrm{x}-2$

Option D:	2-3x
7.	Length of path is
Option A:	Number of Edges in the path
Option B:	Number of circuits in the path
Option C:	Number of loops in the path
Option D:	Number of Vertices in the path
8.	If every two elements of a poset are comparable then the poset is called
Option A:	Sub ordered poset
Option B:	Totally ordered poset
Option C:	Sub Lattice
Option D:	Semigroup
9.	A \qquad has a greatest element and a least element which satisfy $0<=\mathrm{a}<=1$ for every a in the lattice(say, L).
Option A:	semilattice
Option B:	Join semilattice
Option C:	Meet semilattice
Option D:	Bounded semilattice
10.	Let $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$. Determine which of the following are partitions of S:
Option A:	$\mathrm{P} 1=[\{\mathrm{a}, \mathrm{c}, \mathrm{e}\},\{\mathrm{b}\},\{\mathrm{d}, \mathrm{g}\}]$,
Option B:	$\mathrm{P} 2=[\{\mathrm{a}, \mathrm{e}, \mathrm{g}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{e}, \mathrm{f}\}]$,
Option C:	$\mathrm{P} 3=[\{\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{g}\},\{\mathrm{c}\},\{\mathrm{d}, \mathrm{f}\}]$,
Option D:	$P 4=[\{a, b, c, d, e, f, g\},\{c, g\}]$
11.	Solution of linear homogenous recurrence relation: $a_{n}=3 a_{n-1}-2 a_{n-2}$ with $a_{0}=1, a_{1}=3, n \geq 2$ is
Option A:	$a_{n}=(-1)+2^{n}$
Option B:	$a_{n}=(-1)+3.2^{n}$
Option C:	$a_{n}=(-1)(-1)^{n}+2^{n}$
Option D:	$a_{n}=(-1)+2.2^{n}$
12.	The number of integers between 1 and 1000 that are divisible by 3 but not by 2 or 5 is
Option A:	132
Option B:	127
Option C:	134
Option D:	143
13.	If six numbers are selected from 1 to 15 ,find the least number of selections which will have the same sum
Option A:	61
Option B:	91
Option C:	41
Option D:	51

14.	The number of relations from $A=\{a, b, c\}$ to $B=\{1,2\}$
Option A:	54
Option B:	74
Option C:	64
Option D:	84
15.	Let $G=\left(Z_{6},{ }_{6}\right)$ is an Abelian group then the inverse element of 4 is
Option A:	0
Option B:	1
Option C:	2
Option D:	3
16.	If $G=\left(Z_{7}{ }^{*}, \times_{7}\right)$ is a group , the inverse of elements 2,3 and 6 are
Option A:	2,3 and 6
Option B:	1,2 and 3
Option C:	4,5 and 6
Option D:	3,4 and 6
17.	The complete graph with four vertices has edges.
Option A:	3
Option B:	4
Option C:	5
Option D:	6
18.	Which of the following function is bijective?
Option A:	$f: R \rightarrow R$ defined as $f(x)=x^{2}$
Option B:	$f: R \rightarrow R$ defined as $f(x)=3^{x}$
Option C:	$f: R \rightarrow R$ defined as $f(x)=x^{3}-x$
Option D:	$f: R \rightarrow R$ defined as $f(x)=x^{3}+1$
19.	Let a POSET L, \leq be a Lattice. Then for every pair of elements $a, b \in L$ has \qquad .
Option A:	a GLB.
Option B:	a LUB.
Option C:	both GLB and LUB.
Option D:	Both Maximal and Minimal
20.	In a graph a node which is not adjacent to any other node is called \qquad node.
Option A:	Simple
Option B:	Isolated
Option C:	Initiating

Q2	Solve any Four out of Six 5 marks each
A	Let A be a set of integers, Let R be a Relation on AXA defined by (a,b)R(c,d) if and only if $a+d=b+c$. Prove that R is an Equivalence Relation.
B	Show that the sum of the cubes of three consecutive integers is divisible by 9
C	Prove that the set $\mathrm{A}=(0,1,2,3,4,5)$ is a finite Abelian group under Addition modulo 6
D	Find the Transitive closure of the relation R on $\mathrm{A}=\{1,2,3,4\}$ where the Relation $\mathrm{R}=\{(1,2),(2,2),(2,4),(3,4),(4,3),(3,2),(4,1)\}$
E	Check whether Euler cycle and Euler Path exists in the Graph given below.
F	Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be a Function from A to B . Prove that f^{-1} exists if and only if f is a Bijective Function.

Q3.	Solve any Two Questions out of Three $\mathbf{1 0}$ marks each
A	Draw the Hasse Diagram of \mathbf{D}_{72} and $\mathbf{D}_{\mathbf{1 0 5}}$ and check whether they are Lattice.
	Consider the Set $A=\{1,2,3,4,5,6\}$ under multiplication Modulo 7. 1) Prove that A is a Cyclicgroup
B	2) Find the orders and the Subgroups generated by $\{2,3\}$ and $\{3,4\}$

C	A Function $R-\left\{\frac{7}{3}\right\} \rightarrow R-\left\{\frac{4}{3}\right\}$ is defined as that f is Bijective and find the rule for f^{-1}	$f(x)=\frac{(4 x-5)}{(3 x-7)}$ Prove

University of Mumbai

Examination 2020 under cluster _4_ (Lead College: PCE, New Panvel)
Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to $26^{\text {th }}$ June2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE Semester III
Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory Time: 2 hourMax. Marks: 80

Question Number	Correct Option (Enter either ' A ' or ' B ' or ' C ' or ' D ')
Q1.	C
Q2.	A
Q3.	B
Q4	D
Q5	A
Q6	B
Q7	A
Q8.	B
Q9.	D
Q10.	C
Q11.	D
Q12.	C
Q13.	B
Q14.	C
Q15.	C
Q16.	C
Q17.	D
Q18.	D
Q19.	A
Q20.	B

Q2)

Q2)b

Q2)c
(1) From the table we see that \oplus is
for eg:- $2 \oplus(3(4) 5)=(2(\not) 3) \oplus 5$ $\begin{aligned} \text { oreg:- } & 2 \oplus(3 \oplus) 5)=(2 \oplus \\ 2 \oplus & 2=5 \oplus^{5}\end{aligned}$ $4=4$
2) The first row or the gist column show
' O ' is the identic ty Element
(3) The positions of ' 0 ' the additive invert every row (and avery column the additive every $1 \oplus)^{5}=0$ Hence inverse of 5 is Also $\begin{aligned} & 3(\not)^{3}=0 \therefore 3^{-1}=3 \\ & 2 \notin)^{4}=0\end{aligned} \quad \therefore 2^{-1}=4$ addition mot G is a group under a
(4) Fretter $a \notin)^{b}$ and $5 \uplus 4$
eq $4(\not) 5=3$ $\therefore \quad 4(4) 5=5(\pm) 4$.

Q2)d

Q2）e

Q2）f

```
2.f) Let fiA}->B\mathrm{ be a qunction flom }A\mathrm{ to }B\mathrm{ . prove
    that \mp@subsup{f}{}{-1}\mathrm{ exists if and only if}⿻土㇒𠃋小
        f}\mathrm{ is a Bijective ofunction. if
```

pooof: f is Bijective means Every element of
A is associated woith fome element of B
and any element of A is associated with
a unique element of B.
In other words f is Bijective means
there is one to one correspondence between
the elements of A and the elements of B.
Let a_{1}, a_{2} be turo elements of A
Let b_{1}, b_{2} be two elements of B
$\begin{aligned} & \text { such tha } \\ & f\left(a_{1}\right)=b_{1} \text { and } f\left(a_{2}\right)=b_{2}\end{aligned}$
$\begin{aligned} f\left(a_{1}\right) & =b_{1} \text { and } f\left(a_{2}\right)=b_{2} \\ a_{1} & =f^{-1}\left(b_{1}\right) \text { and } a_{2}=f^{-1}\left(b_{2}\right)\end{aligned}$
Hence $a_{1}=f^{-1}\left(b_{1}\right)$ and $a_{2}=f^{-1}\left(b_{2}\right.$
if possible. let $f^{-1}\left(b_{1}\right)=f^{-1}\left(b_{2}\right)$
if poseible. 6et $f^{-1}\left(b_{1}\right)=f^{-1}\left(b_{2}\right)$
$\begin{aligned} \therefore a_{1} & =a_{2} \\ f\left(a_{1}\right) & =f\left(a_{2}\right)\end{aligned}$
$b_{1}=b^{2}$ is one to one.
This means f^{-1} is one to one.
Q3)
Prove that f is bjective and find the rule for f^{-1}
Sol. : (i) To prove that fis injective or one-to-one.

Let x_{1}, x_{2} be two elements in $R-\left\{\frac{7}{3}\right\}$ and let $f\left(x_{1}\right)=f\left(x_{2}\right)$ ．

$$
\begin{aligned}
& \therefore \frac{4 x_{1}-5}{3 x_{1}-7}=\frac{4 x_{2}-5}{3 x_{2}-7} \quad \therefore\left(4 x_{1}-5\right)\left(3 x_{2}-7\right)=\left(4 x_{2}-5\right)\left(3 x_{1}-7\right) \\
& \therefore 12 x_{1} x_{2}-28 x_{1}-15 x_{2}+35=12 x_{2} x_{1}-28 x_{2}-15 x_{1}+35 \\
& \therefore(-28+15) x_{1}=(-28+15) x_{2} \\
& \therefore-13 x_{1}=-13 x_{2} \quad \therefore x_{1}=x_{2} \\
& \therefore \text { fis injective or one-to-one. }
\end{aligned}
$$

（ii）To prove that f is surjective or onto．
Let $y=\frac{4 x-5}{3 x-7}$ ．
$\therefore 3 x y-7 y=4 x-5$
$\therefore 3 x y-4 x=7 x-5$
$x(3 y-4)=7 y-5$
$x=\frac{7 y-5}{3 y-4}$
$\therefore x \in R-\left\{\frac{7}{3}\right\}$ if $y \in R-\left\{\frac{4}{3}\right\}$
\therefore fis suriective or onto．
（iii）Since f is injective and surjective，it is bijective and has f^{-1} and $f^{-1}=\frac{7 x-5}{3 x-4}$

