University of Mumbai

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2019

Examination: SE, Semester: III

Course Code: ECC302 and Course Name: Electronic Devices and Circuits

Time: 2 Hour

_

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	For Zener diode as a voltage regulator , load regulation means		
Option A:	variable input voltage and fixed load resistor		
Option B:	variable input voltage and variable load resistor		
Option C:	fixed input voltage and variable load resistor		
Option D:	fixed input voltage and fixed load resistor		
2.	As an Amplifier BJT should be used in region.		
Option A:	Cut-off		
Option B:	Saturation		
Option C:	Breakdown		
Option D:	Active		
3.	As an Amplifier MOSFET should be used in region.		
Option A:	Cut-off		
Option B:	Saturation		
Option C:	Breakdown		
Option D:	linear		
4.	In BJT according to higher to lower doping concentration sequence is		
Option A:	base,emitter and collector		
Option B:	emitter, collector and base		
Option C:	collector, base and emitter		
Option D:	Emitter, base and collector		
5.	In BJT for Active region junction should be forward bias and		
	junction should be reverse bias		
Option A:	BE, CB		
Option B:	CB, BE		
Option C:	BE, EB		
Option D:	CE, BE		

6.	In BJT biasing circuits VBE decreases aboutper degree celsius(°C)			
	increase in temperature.			
Option A:	25mV			
Option B:	2.5mV			
Option C:	2.5V			
Option D:	25V			
7.	ICO (reverse saturation current) in value for every 10°C increase in temperature			
Option A:	triples			
Option B [.]	remains same			
Option C [.]				
Option D:	doubles			
Option D.				
8	Which among the below mentioned implementation strategies is/are precise to			
0.	obtain an AC equivalent circuit of MOSFET?			
	A Replacement of all capacitors by open circuits			
	B. Replacement of all capacitors by short circuits			
	C. Setting of all DC voltages to zero			
	D. Setting of all DC voltages to unity			
Option A:	A & C			
Option B:	B&C			
Option C:	B & D			
Option D:	A & D			
9.	The E-MOSFET drain feedback CS amplifier with the result that $rd = 50 k$, RF =			
	10M, RD = 2.2 K, gm = 1.75 mS, find the output impedance?			
Option A:	49.75 k			
Option B:	2.11 k			
Option C:	50 k			
Option D:	10 M			
10.	When a multistage amplifier is to amplify low frequency signal, then one must			
	use coupling			
Option A:	RC			
Option B:	Transformer			
Option C:	Direct			
Option D: impedance				
11.	In a multistage amplifier, the overall frequency response is determined by the			
Option A:	Frequency response of each stage depending on the relationships of the critical			
	frequencies.			

Option B:	frequency response of the first amplifier		
Option C:	frequency response of the last amplifier		
Option D:	lower critical frequency of the first amplifier and the upper critical frequency of		
	the final amplifier		
12. In the mid frequency region, coupling capacitor acts as a			
	stray capacitance acts as a circuits		
Option A:	open, short		
Option B:	short, open		
Option C:	short, short		
Option D:	open, open		
13.	The of the two values of higher cutoff frequencies is the dominant		
	frequency of complete system		
Option A:	highest		
Option B:	lowest		
Option C:	middle		
Option D:	average		
14.	Which BJT transistor has a better high frequency response?		
Option A:	NPN		
Option B:	PNP		
Option C:	Neither NPN nor PNP		
Option D:	Frequency response doesn't depend on type of BJT		
15.	The size of a power transistor is made considerably large to		
Option A:	Provide easy handling		
Option B:	Dissipate heat		
Option C:	Facilitate connections		
Option D:	Consume heat		
16.	The main disadvantage of class B type push-pull power amplifier is		
Option A:	Harmonic distortion		
Option B:	Aliasing problem		
Option C:	Crossover distortion		
Option D:	Two transistor required		
17.	If differential mode gain is 3500 and common mode gain is 3.5, the CMRR is		
Option A:	1000		
Option B:	0.001		
Option C:	12250		
Option D [.]	3503.5		
- <u>r</u>			

18.	CMRR of a differential amplifier can be improved by decreasing	
Option A:	Differential voltage gain	
Option B:	Common mode voltage gain	
Option C:	Supply current	
Option D:	Supply voltage	
19.	When a differential amplifier is operated single-ended,	
Option A:	The output is grounded	
Option B:	One input is grounded and signal is applied to the other	
Option C:	Both inputs are connected together	
Option D:	The output is not inverted	
20.	In the common mode,	
Option A:	Both inputs are grounded	
Option B:	The outputs are connected together	
Option C:	An identical signal appears on both the inputs	
Option D:	The output signal are in-phase	
1		

Q2	Solve any Two Questions out of Three 10 marks each	
А	Draw high frequency equivalent circuit of MOSFET CS amplifier with Rs unbypassed and self bias. Derive the expression for input and output upper cutoff frequencies with considering input signal resistor (Rsig) and load resistor (R_L).	
В	Explain class-AB push pull amplifier in detail?	
С	Find the Q point for the following circuit Fig. 1, and also determine the voltage gain, input impedance and output impedance $V_{CC} = +12 V$ R_{B} R_{B} R_{C} R_{B} R_{C} R_{C} R_{B} R_{C}	

Q3.	
А	Solve any Two 5 marks each
i.	Explain Zener diode as a voltage regulator

ii.	Explain construction and working of n-channel E-MOSFET
iii.	Find the Q point for the following circuit Fig. 2
	0 12 V
	ξ 2 kΩ
	10 MΩ2 1 μF
	$\frac{1}{V_{GS(on)} = 8 \text{ N}}$
	$1 \mu F$ $V_{GS(Tb)} = 3 V$
	<u> </u>
	Fig. 2
В	Solve any One 10 marks each
i.	For the circuit shown in Fig. 3, Transistor parameters are $Kn = 1 \text{ mA/V}^2$,
	Vtn = 0.7 V, Cgs = 2 pF, Cgd = 0.2 pF, λ = 0, find the mid band voltage
	gain, miller capacitance and upper cut-off frequency.
	9+101
	\$1.2K
	A
	14F JUF
	a worth the
	3100K 31K - 474F
	Fig. 3
11.	Derive the equation of CMRR for the MOS differential pair amplifier.

University of Mumbai

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2019

Examination: SE, Semester: III

Course Code: ECC302 and Course Name: Electronic Devices and Circuits

Time: 2 hour

Question	Correct Option (Enter either 'A' or 'B'
Number	or 'C' or 'D')
Q1.	С
Q2.	D
Q3.	В
Q4	В
Q5	А
Q6	В
Q7	D
Q8.	А
Q9.	В
Q10.	С
Q11.	А
Q12.	В
Q13.	В
Q14.	А
Q15.	В
Q16.	С
Q17.	А
Q18.	В
Q19.	В
Q20.	С

Max. Marks: 80