University of Mumbai

Examination June 2021

Examinations Commencing from 1st June 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester IV

Course Code: CSC402 and Course Name: Analysis of Algorithm

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	Which of the following is not $O(n^2)$?	
Option A:	$(5^{10}) * n + 990$	
Option B:	N ^{1.45}	
Option C:	$n^3 / (\sqrt{n})$	
Option D:	$(3^{50}) * n$	
•		
2.	If A is asymptotically less efficient than B, it means?	
Option A:	B will be a better choice for all inputs	
Option B:	B will be a better choice for all inputs except possibly small inputs	
Option C:	B will be a better choice for all inputs except possibly large inputs	
Option D:	B will be a better choice for small inputs	
3.	In Quicksort algorithm, there is a procedure for finding a pivot element that splits	
	the array into two sub-arrays, each of which contains at least Two-fifth of the	
	elements. Let T(n) be the number of comparisons required to sort n elements.	
	Then	
Option A:	$T(n) \le 2T(n/5) + n$	
Option B:	$T(n) \le T(2n/5) + T(3n/5) + n$	
Option C:	$T(n) \le 2T(4n/5) + n$	
Option D:	$T(n) \le 2T(n/2) + n$	
4.	What is the result of following recurrences $T(n)=aT(n/b)+n^{c}$?	
Option A:	$T(n) = O(n^{\log_{b} a})$	
Option B:	$T(n) = O(n^{c} \log n)$	
Option C:	T(n) = O(f(n))	
Option D:	$T(n) = O(n^2)$	
5.	The class of decision problems that can be solved by non-deterministic	
	polynomial algorithms are called as.	
Option A:	NP	
Option B:	P	
Option C:	Hard	
Option D:	Complete	
6.	If you are sorting in ascending order with insertion sort, average case running	
Option A:	U(N)	

Option B:	O(N log N)	
Option C:	O(log N)	
Option D:	$O(N^2)$	
7.	Worst case time complexity of merge sort is	
Option A:	$O(n \log n)$	
Option B:	$O(n^2)$	
Option C:	$O(n^2 \log n)$	
Option D:	$O(n \log n^2)$	
8.	Apply Quick sort on a given sequence 6 10 13 5 8 3 2 11. What is the sequence	
	after first phase, pivot is first element?	
Option A:	5 3 2 6 10 8 13 11	
Option B:	52368131011	
Option C:	6 5 13 10 8 3 2 11	
Option D:	65328131011	
9.	Consider the graph M with 3 vertices. Its adjacency matrix is shown below.	
	Which of the following is true?	
	0 2 2	
	2 0 2	
Option A:	Graph M has no minimum spanning tree	
Option B:	Graph M has a unique minimum spanning trees of cost 4	
Option C:	Graph M has 3 distinct minimum spanning trees, each of cost 4	
Option D:	Graph M has 3 spanning trees of different costs	
10		
10.	Given items as {value, weight} pairs { $\{60,10\}, \{20,10\}, \{40,5\}\}$. The capacity of	
Ontion A:	knapsack=20. Find the maximum value output assuming items to be divisible.	
Option A:		
Option D:		
Option C:	100	
Option D:		
11	A graph with pagative weight evals is having no. of shortest paths	
Option A:	A graph with negative weight cycle is having10. Of shortest paths	
Option B:		
Option C:	7ero	
Option D:	Infinite	
12	Floyd Warshall Algorithm falls into	
Option A:	Greedy technique	
Option P.	Dynamic Programming	
Option C:	Lipear Programming	
Option D:	Backtracking	
Option D.		
13	In assembly line scheduling problem lookup tables are required	
Ontion A:	n assembly mie senedumig problem, lookup tables are required.	
Option R:		
Option C:		
Option D:		
\cup option D :	5	

14.	A travelling salesman problem with 55 cities hasno. of feasible		
	tours.		
	27		
Option A:	37 arcs		
Option B.	54 arcs		
option D.			
Option C:	55 arcs		
Option D:	990 arcs		
15.	is not a branch and bound strategy to generate branches		
Option A:	LIFO branch and bound		
Option B:	FIFO branch and bound		
Option C:	Lowest cost branch and bound		
Option D:	Highest cost branch and bound		
16.	Of the following given options, which one of the following is a correct option that		
	provides an optimal solution for 4-queens problem?		
Option A:	(3,1,4,2)		
Option B:			
Option C:	(4,3,2,1)		
Option D:			
17.	Chromatic number of a graph is no of colors required to color the vertices		
	in graph.		
Option A:	Maximum		
Option B:	Same		
Option C:	Minimum		
Option D:	More than Number of vertices		
10			
18.	In Rabin and Karp Algorithm, preprocessing can be done in		
Option A:	$\theta(m^2)$		
Option B:	θ (mlogn)		
Option C:	θ (m) Ω		
Option D.			
19	What happens when the modulo value(a) is taken large?		
Option A:	Complexity increases		
Option B:	Spurious hits occur frequently		
Option C:	Cost of extra checking is low		
Option D:	Matching time increases		
20.	Given a pattern of length- 5 window, find the spurious hit in the given text string.		
	Pattern: 7 3 9 9 2		
	Modulus: 13 Julie: 0.1.2.2.4.5.6.7.8.0.10.11.12.12.14.15.16.17.18.10.20		
	$\begin{array}{c} \text{Index: } 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 0 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 1 \ 18 \ 19 \ 20 \\ \hline \text{Toxt: } 2 \ 3 \ 5 \ 0 \ 0 \ 2 \ 1 \ 4 \ 15 \ 2 \ 6 \ 7 \ 2 \ 0 \ 0 \ 2 \ 1 \ 2 \ 0 \\ \hline \end{array}$		
	1ext: 23390231413 2 0 / 3 9 9 2 1 3 9		

Option A:	6-10
Option B:	12-16
Option C:	3-7
Option D:	13-17

Q2	Solve any Four out of Six	5 marks each
А	Explain Master theorem with example	
В	Define P, NP, NP-Hard and NP-Complete Complexity Classes.	
С	Discuss Complexity of Quicksort Algorithm in all cases.	
D	Rewrite Binary Search Algorithm and Explain its complexity	
E	Find LCS for strings X= "ABSDG" and Y= "GBSTR"	
F	Write short note on Rabin Karp Algorithm	

University of Mumbai

Examination June 2021

Examinations Commencing from 1st June 2021

Program: **Computer Engineering**

Curriculum Scheme: Rev2019

Examination: SE Semester IV

Course Code: CSC402 and Course Name: Analysis of Algorithm

Time: 2 hour

Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	В
Q3.	В
Q4	А
Q5	А
Q6	D
Q7	А
Q8.	В
Q9.	С
Q10.	А
Q11.	С
Q12.	В
Q13.	С
Q14.	С
Q15.	D
Q16.	А
Q17.	С
Q18.	С
Q19.	С
Q20.	А

82.E

