University of Mumbai

Examination June 2021
Examinations Commencing from 1 June 2021
Program：Computer Engineering
Curriculum Scheme：Rev2019
Examination：SE Semester IV
Course Code：CSC402 and Course Name：Analysis of Algorithm
Time： 2 hour
Max．Marks： 80
ニニ＝＝ニ

Q1．	Choose the correct option for following questions．All the Questions are compulsory and carry equal marks
1.	Which of the following is not $\mathrm{O}\left(\mathrm{n}^{2}\right)$ ？
Option A：	$\left(5^{10}\right) * n+990$
Option B：	$\mathrm{N}^{1.45}$
Option C：	$\mathrm{n}^{3} /(\sqrt{n})$
Option D：	$\left(3^{50}\right) * \mathrm{n}$
2.	If A is asymptotically less efficient than B，it means？
Option A：	B will be a better choice for all inputs
Option B：	B will be a better choice for all inputs except possibly small inputs
Option C：	B will be a better choice for all inputs except possibly large inputs
Option D：	B will be a better choice for small inputs
3.	In Quicksort algorithm，there is a procedure for finding a pivot element that splits the array into two sub－arrays，each of which contains at least Two－fifth of the elements．Let $\mathrm{T}(\mathrm{n})$ be the number of comparisons required to sort n elements． Then
Option A：	$\mathrm{T}(\mathrm{n})<=2 \mathrm{~T}(\mathrm{n} / 5)+\mathrm{n}$
Option B：	$\mathrm{T}(\mathrm{n})<=\mathrm{T}(2 \mathrm{n} / 5)+\mathrm{T}(3 \mathrm{n} / 5)+\mathrm{n}$
Option C：	$\mathrm{T}(\mathrm{n})<=2 \mathrm{~T}(4 \mathrm{n} / 5)+\mathrm{n}$
Option D：	$\mathrm{T}(\mathrm{n})<=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}$
4.	What is the result of following recurrences $\mathrm{T}(\mathrm{n})=\mathrm{aT}(\mathrm{n} / \mathrm{b})+\mathrm{n}^{\mathrm{c}}$ ？
Option A：	$\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\log _{\mathrm{b}}{ }^{\text {a }} \text { ）}}\right.$
Option B：	$\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\mathrm{c}} \log \mathrm{n}\right)$
Option C：	$\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{f}(\mathrm{n})$ ）
Option D：	$\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)$
5.	The class of decision problems that can be solved by non－deterministic polynomial algorithms are called as．
Option A：	NP
Option B：	P
Option C：	Hard
Option D：	Complete
6.	If you are sorting in ascending order with insertion sort，average case running time it will take is？
Option A：	$\mathrm{O}(\mathrm{N})$

Option B:	$\mathrm{O}(\mathrm{N} \log \mathrm{N})$
Option C:	$\mathrm{O}(\log \mathrm{N})$
Option D:	$\mathrm{O}\left(\mathrm{N}^{2}\right)$
7.	Worst case time complexity of merge sort is
Option A:	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$
Option B:	$\mathrm{O}\left(\mathrm{n}^{2}\right)$
Option C:	$\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$
Option D:	$\mathrm{O}\left(\mathrm{n} \log \mathrm{n}^{2}\right)$
8.	Apply Quick sort on a given sequence 61013583211 . What is the sequence after first phase, pivot is first element?
Option A:	53261081311
Option B:	52368131011
Option C:	65131083211
Option D:	65328131011
9.	Consider the graph M with 3 vertices. Its adjacency matrix is shown below. Which of the following is true?
Option A:	Graph M has no minimum spanning tree
Option B:	Graph M has a unique minimum spanning trees of cost 4
Option C:	Graph M has 3 distinct minimum spanning trees, each of cost 4
Option D:	Graph M has 3 spanning trees of different costs
10.	Given items as $\{$ value, weight $\}$ pairs $\{\{60,10\},\{20,10\},\{40,5\}\}$. The capacity of knapsack=20. Find the maximum value output assuming items to be divisible.
Option A:	110
Option B:	80
Option C:	100
Option D:	40
11.	A graph with negative weight cycle is having _____ no. of shortest paths
Option A:	One
Option B:	Two
Option C:	Zero
Option D:	Infinite
12.	Floyd Warshall Algorithm falls into
Option A:	Greedy technique
Option B:	Dynamic Programming
Option C:	Linear Programming
Option D:	Backtracking
13.	In assembly line scheduling problem, ___ lookup tables are required.
Option A:	0
Option B:	1
Option C:	2
Option D:	3

14.	A travelling salesman problem with 55 cities has \qquad no. of feasible tours.
Option A:	37 arcs
Option B:	54 arcs
Option C:	55 arcs
Option D:	990 arcs
15.	is not a branch and bound strategy to generate branches
Option A:	LIFO branch and bound
Option B:	FIFO branch and bound
Option C:	Lowest cost branch and bound
Option D:	Highest cost branch and bound
16.	Of the following given options, which one of the following is a correct option that provides an optimal solution for 4 -queens problem?
Option A:	(3,1,4,2)
Option B:	(2,3,1,4)
Option C:	$(4,3,2,1)$
Option D:	(4,2,3,1)
17.	Chromatic number of a graph is \qquad no of colors required to color the vertices in graph.
Option A:	Maximum
Option B:	Same
Option C:	Minimum
Option D:	More than Number of vertices
18.	In Rabin and Karp Algorithm, preprocessing can be done in
Option A:	$\theta\left(\mathrm{m}^{2}\right)$
Option B:	θ (mlogn)
Option C:	θ (m)
Option D:	$\mathrm{O}(\mathrm{n})$
19.	What happens when the modulo value(q) is taken large?
Option A:	Complexity increases
Option B:	Spurious hits occur frequently
Option C:	Cost of extra checking is low
Option D:	Matching time increases
20.	Given a pattern of length- 5 window, find the spurious hit in the given text string. Pattern: 73992 Modulus: 13 Index: 01234567891011121314151617181920 Text: 23590231415 2 67139192139

Option A:	$6-10$
Option B:	$12-16$
Option C:	$3-7$
Option D:	$13-17$

Q2	Solve any Four out of Six
A	Explain Master theorem with example
B marks each	
C	Define P, NP, NP-Hard and NP-Complete Complexity Classes.
D	Discuss Complexity of Quicksort Algorithm in all cases.
E	Find LCS Binary Search Algorithm and Explain its complexity
F	Write short note on Rabin Karp "ABSDG" and Y= "GBSTR"

Q3.	Solve any Two Questions out of Three 10 marks each
A	Apply Dijkstra algorithm on following graph. Show all intermediate steps.
B	Explain 15 Puzzle problem with Branch and Bound method
C	Find a minimum cost path from A to L in the following multistage graph

University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE Semester IV
Course Code: CSC402 and Course Name: Analysis of Algorithm
Time: 2 hour
Max. Marks: 80

Question Number	Correct Option Enter either 'A' or ' \mathbf{B} or ' ' $\mathbf{'}^{\prime}$ or ' \mathbf{D} ''
Q1.	C
Q2.	B
Q3.	B
Q4	A
Q5	A
Q6	D
Q7	A
Q8.	B
Q9.	C
Q10.	A
Q11.	C
Q12.	B
Q13.	C
Q14.	C
Q15.	D
Q16.	A
Q17.	C
Q18.	C
Q19.	C
Q20.	A

$\theta 2 \cdot E$

Q. 3 A.

(3)

Q. 3 B

Formard apprach.

d		
L	θ	-
K	11	L
J	8	L
J	7	L
H	18	J
G	12	I
F	17	J
E	18	G
D	27	H
C	15	G
B	20	G
A	21	G

$$
A-C-G-I-L
$$

path eost $=21$

