University of Mumbai
 Examination 2021 under cluster _ (Lead College:
 \qquad
 Examinations Commencing from 1 ${ }^{\text {st }}$ June 2021 to 10 ${ }^{\text {th }}$ June 2021
 Program: BE Electronics Engineering
 Curriculum Scheme: Rev 2019 'C' Scheme
 Examination: SE Semester IV
 Course Code: ELC401 and Course Name: Engineering Mathematics IV

Time: 2 hour
Max. Marks: 80
Note : Q1 carrying 40 marks. Q2 and Q3 are carrying 20 equal marks.

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.				
1.	If x is a discrete random variable with the following probability distribution				
		1	2	3	
	$\mathrm{P}(\mathrm{x})$	a	2a	a	
	Find $\mathrm{P}(\mathrm{X} \leq 2)$				
Option A:	$\frac{1}{4}$				
Option B:	$\overline{2}$				
Option C:	$\frac{3}{4}$				
Option D:	1				
2.	Find $\mathrm{E}(\mathrm{X})$ if X has the p.d.f $\mathrm{f}(\mathrm{x})= \begin{cases}\frac{3}{4}\left(2 x-x^{2}\right), 0 \leq x \leq 2 \\ 0 & , \text { otherwise }\end{cases}$				
Option A:	$\frac{3}{2}$				
Option B:	1				
Option C:	2				
Option D:	$\frac{1}{2}$				
3.	If X and Y are independent random variables with means 2,3 and variance 1,2 respectively, find the mean and variance of the random variable $\mathrm{Z}=2 \mathrm{X}-5 \mathrm{Y}$				
Option A:	-11,54				
Option B:	19, 54				
Option C:	19, -8				
Option D:	-11, -8				
4.	Suppose the number of accidents occurring weekly on a particular stretch of a highway follow a Poisson distribution with mean 3 .Calculate the probability that there is at least one accident this week.				
Option A:	0.6347				
Option B:	0.9502				

Option C:	0.7275		
Option D:	0.8002		
5.	The following res pressure (y) of a g	e obt 10 m x 53 130 0.8 re of	m records of age (x) hose age is 45 ?
Option A:	134.78		
Option B:	130.56		
Option C:	129.56		
Option D:	137.56		
6.	A coefficient of correlation is computed to be -0.95 means that		
Option A:	The relationship between the two variables is weak		
Option B:	The relationship between the two variables is strong and positive.		
Option C:	The relationship between the two variables is strong but negative.		
Option D:	The correlation coefficient cannot have this value.		
7.	If the tangent of the angle made by the line of regression of y on x is 0.6 and $\sigma_{x}=\frac{1}{2} \sigma_{y}$ Find the correlation coefficient between x and y .		
Option A:	- 2.5		
Option B:	0.25		
Option C:	-0.3		
Option D:	0.3		
8.	Evaluate $\int_{c} \frac{7 \mathrm{z}-1}{(z-3)(z+5)} d z$, where c is the circle $\|z\|=1$.		
Option A:	$2 \pi i$		
Option B:	0		
Option C:	$6 \pi \mathrm{i}$		
Option D:	πi		
9.	Find the residue of $f(z)=\frac{z^{2}}{(z+2)(z-1)^{2}}$ at $\mathrm{z}=-2$		
Option A:	1/9		
Option B:	5/9		
Option C:	1/3		
Option D:	4/9		
10.	Identify the type of singularity of the function $f(z)=\frac{\sinh z}{z^{7}}$		
Option A:	$\mathrm{z}=0$ is a pole of order 7 for the given function		
Option B:	$\mathrm{z}=0$ is a pole of order 6 for the given function		
Option C:	$\mathrm{z}=0$ is an essential singularity		

Option D:	$\mathrm{z}=0$ is a pole of order 3 for the given function				
11.	Evaluate $\int_{C} \frac{e^{z}}{z-1} d z$ where C where c is the circle $\|z\|=2$.				
Option A:	$2 \pi i$				
Option B:	$2 \pi i e^{2}$				
Option C:	$2 \pi i e$				
Option D:	$\pi i e^{2}$				
12.	Find the value of the integral $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path $\mathrm{y}=\mathrm{x}$				
Option A:	$\frac{5-i}{6}$				
Option B:	$\frac{5+i}{6}$				
Option C:	$\frac{1+5 i}{6}$				
Option D:	$\frac{1-5 i}{6}$				
13.	Find the vector orthogonal to (2,1,-2) and (1,2,2)				
Option A:	(1,-2, 1)				
Option B:	$(2,-2,1)$				
Option C:	$(1,-1,1)$				
Option D:	(2, 2, -1)				
14.	If $\mathrm{u}=(3,1,4,-2) \mathrm{v}=(2,2,0,1)$ then find $\langle u, v\rangle$ and $\\|u\\|,\\|v\\|$				
Option A:	$-6, \sqrt{30}, \sqrt{10}$				
Option B:	$5, \sqrt{2}, \sqrt{6}$				
Option C:	$5, \sqrt{30}, 3$				
Option D:	$6, \sqrt{30}, 3$				
15	Determine which of the following are subspaces of R^{3} $\begin{aligned} & W_{1}=\{(a, 0, b), a, b \in R\} \\ & W_{2}=\{(a, b, 1), a, b \in R\} \end{aligned}$				
Option A:	W_{1} and W_{2} are the subspaces of R^{3}				
Option B:	W_{1} and W_{2} are not the subspaces of R^{3}				
Option C:	W_{1} is a subapace of R^{3} but W_{2} is not a subspace of R^{3}				
Option D:	W_{1} is not a subapace of R^{3} but W_{2} is a subspace of R^{3}				
16.	Write down the matrix of the quadratic form $x_{1}{ }^{2}+2 x_{2}{ }^{2}-7 x_{3}{ }^{2}-4 x_{1} x_{2}+6 x_{2} x_{3}+8 x_{3} x_{1}$				
Option A:	$\left[\begin{array}{ccc}1 & -2 & 4 \\ -2 & 2 & 3 \\ 4 & 3 & -7\end{array}\right]$				
Option B:	$\left[\begin{array}{ccc}1 & -4 & 8 \\ -4 & 2 & 6 \\ 8 & 6 & -7\end{array}\right]$				

Option C:	$\left[\begin{array}{ccc} 1 & 2 & 4 \\ 2 & 2 & 3 \\ 4 & 3 & -7 \end{array}\right]$		
Option D:	$\left[\begin{array}{lll} 1 & 4 & 8 \\ 4 & 2 & 6 \\ 8 & 6 & 7 \end{array}\right]$		
17.	Find the rank , signature, index of the transformed quadratic form $3 y_{1}{ }^{2}+\frac{2}{3} y_{2}{ }^{2}-\frac{39}{2} y_{3}{ }^{2}$.		
Option A:	rank $=3$, signature $=2$, index $=1$		
Option B:	rank $=3$, signature $=1, \quad$ index $=2$.		
Option C:	rank $=2, \quad$ signature $=3, \quad$ index $=1$.		
Option D:	rank $=2, \quad$ signatur $\mathrm{e}=1, \quad$ index $=3$.		
18.	A necessary condition for $\mathrm{I}=\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\mathrm{I}}, y^{\\|}\right) d x$ to be an extremal is that		
Option A:	$\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y \mid}\right)+\frac{d^{2}}{d x^{2}}\left(\frac{\partial f}{\partial y \\|}\right)=0$		
Option B:	$\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$		
Option C:	$\frac{\partial f}{\partial y}+\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$		
Option D:	$\frac{\partial f}{\partial y}+\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\\|}}\right)+\frac{d^{2}}{d x^{2}}\left(\frac{\partial f}{\partial y^{\\|}}\right)=0$		
19.	The functional $\mathrm{I}=\int_{a}^{b}\left(y^{\left.\right\|^{2}}+12 x y\right) d x$ has the following extremal with c_{1} and c_{2} as arbitrary constants.		
Option A:	$c_{1} x^{3}+c_{2} x$		
Option B:	$x^{2}+c_{1} x+c_{2}$		
Option C:	$c_{1} x+c_{2}$		
Option D:	$x^{3}+c_{1} x+c_{2}$		
20.	The extremal of the functional $\mathrm{I}=\int_{a}^{b}\left(16 y^{2}-y^{\\|^{2}}+x^{2}\right) d x$ is		
Option A:	$\mathrm{y}=c_{1} \cos 2 x+c_{2} \sin 2 x$		
Option B:	$\mathrm{y}=c_{1} e^{2 x}+c_{2} e^{-2 x}$		
Option C:	$\mathrm{y}=c_{1} e^{2 x}+c_{2} e^{-2 x}+c_{3} \cos 2 x+c_{4} \sin 2 x$		
Option D:	$\mathrm{y}=c_{1} e^{x}+c_{2} e^{-x}+c_{3} \cos x+c_{4} \sin x$		

$\begin{aligned} & \text { Q3. } \\ & \text { (20 Marks) } \end{aligned}$	Solve any Four out of Six. 5 marks each
A	In a sample of 1000 cases, the mean of a certain test is 14 and standard deviation is 2.5 Assuming the distribution to be normal ,find (i)how many students score between 12 and 15 ? (ii) how many score above 18 ? (iii) how many score below 8 ?
B	In a partially destroyed laboratory, record of an analysis of correlation data, the following results only are legible: $\sigma_{x}=3$. Regression equations: $8 \mathrm{X}-10 \mathrm{Y}=-66, \quad 40 \mathrm{X}-18 \mathrm{Y}=214$. What are: (i) the mean values X and Y, (ii) the correlation coefficient between X and Y , (iii) the standard deviation of Y
C	Evaluate $\oint_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-2)(z-3)} d z$ where C is the circle $\|z\|=4$..
D	Let V be a set of positive real numbers with addition and scalar multiplication defined as $x+y=x y$ and $c x=x^{c}$. Show that Vis a vector space under this addition and scalar multiplication.
E	Reduce the following quadratic form into canonical form. $\text { Q: } x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{3}+2 x_{2} x_{3}+2 x_{2} x_{1}$
F	Using Rayleigh -Ritz method, solve the boundary value problem $\mathrm{I}=\int_{0}^{1}\left(y^{\left.\right\|^{2}}-y^{2}-2 x y\right) d x$ with $\mathrm{y}(0)=0$ and $\mathrm{y}(1)=0$.

University of Mumbai

Examination 2021 under cluster _ (Lead College: \qquad _)
Examinations Commencing from $1^{\text {st }}$ June 2021 to $10^{\text {th }}$ June 2021
Program: BE Electronics Engineering
Curriculum Scheme: Rev 2019 'C' Scheme
Examination: SE Semester IV
Course Code: ELC401 and Course Name: Engineering Mathematics IV

Question Number	Correct Option Enter either 'A' or ' \mathbf{B} or ' $\mathbf{'}^{\prime}$ ' or ' \mathbf{D} ')
Q1.	C
Q2.	B
Q3.	A
Q4	B
Q5	A
Q6	C
Q7	D
Q8.	B
Q9.	D
Q10.	B
Q11.	C
Q12.	A
Q13.	B
Q14.	D
Q15.	C
Q16.	A
Q17.	B
Q18.	A
Q19.	D
Q20.	C

