University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Electronics \& Telecommunication
Curriculum Scheme: R2019
Examination: SE Semester IV
Course Code: ECC 403 and Course Name: Linear Integrated Circuit
Time: 2 hours

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	An ideal op-amp requires infinite bandwidth because
Option A:	Signals can be amplified without attenuation
Option B:	Output common-mode noise voltage is zero
Option C:	Output voltage occurs simultaneously with input voltage changes
Option D:	Output can drive infinite number of devices
2.	In an inverting amplifier using op-amp
Option A:	The input is connected to the non-inverting terminal via resistor and inverting terminal is kept floating
Option B:	The input is connected to the non-inverting terminal via resistor and inverting terminal is grounded
Option C:	The input is connected to the inverting terminal via resistor and non- inverting terminal is kept floating
Option D:	The input is connected to the inverting terminal via resistor and non- inverting terminal is grounded
3.	For the difference amplifier shown below, the output voltage is given by
Option A:	$v_{0}=v_{1}+v_{2}$
Option B:	$\nu_{0}=v_{1}-v_{2}$
Option C:	$\nu_{0}=-v_{1}+\nu_{2}$
Option D:	$v_{0}=-\left(v_{1}+v_{2}\right)$

4.	A current to voltage converter converts
Option A:	Input current to proportional output voltage.
Option B:	Input current to proportional output current.
Option C:	Input voltage to proportional output voltage.
Option D:	Input voltage to proportional output current.
5.	The filter shown below has $\mathrm{R}_{1}=\mathbf{2 7} \mathrm{k} \Omega, \mathrm{R}_{\mathrm{F}}=15.8 \mathrm{k} \Omega, \mathrm{R}_{2}=\mathrm{R}_{\mathbf{3}}=\mathbf{3 3} \mathrm{k} \Omega, \mathrm{C}_{2}=$ $\mathrm{C}_{3}=0.0047 \mu \mathrm{~F}$ is a
Option A:	High Pass filter with cut off frequency $\approx 1 \mathrm{kHz}$
Option B:	High Pass filter with cut off frequency $\approx 10 \mathrm{kHz}$
Option C:	Low Pass filter with cut off frequency $\approx 1 \mathrm{kHz}$
Option D:	Low Pass filter with cut off frequency $\approx 10 \mathrm{kHz}$
6.	For a Wein Bridge oscillator, the RC networks in the feedback circuit have values of their resistances $\mathrm{R}=3.3 \mathrm{k} \Omega$ and capacitances $\mathrm{C}=0.047 \mu \mathrm{~F}$,
Option A:	Its frequency of oscillation is $\approx 1 \mathrm{kHz}$
Option B:	Its frequency of oscillation is $\approx 3.030 \mathrm{kHz}$
Option C:	Its frequency of oscillation is $\approx 3.3 \mathrm{kHz}$
Option D:	Its frequency of oscillation is $\approx 480 \mathrm{~Hz}$
7.	For a non inverting comparator, input signal and reference voltage are given to
Option A:	inverting terminal of the op-amp through separate resistors
Option B:	non-inverting terminal of the op-amp through separate resistors
Option C:	inverting terminal and non-inverting terminal of the op-amp respectively
Option D:	non-inverting terminal and inverting terminal of the op-amp respectively
8.	An Inverting Schmitt trigger employs
Option A:	Only Negative feedback
Option B:	Only Positive feedback
Option C:	Both Negative and Positive feedback
Option D:	No feedback
9.	A square waveform having ON time greater than its OFF time is fed as input to an integrator. The resulting output of the integrator is called
Option A:	Triangular waveform
Option B:	Sawtooth waveform
Option C:	Inverted Square waveform
Option D:	Sine waveform

10.	The reference voltage of upper comparator used in functional block diagram of IC 555 is
Option A:	$1 / 5 \mathrm{~V}_{\mathrm{CC}}$
Option B:	$1 / 3 \mathrm{~V}_{\mathrm{CC}}$
Option C:	$2 / 3 \mathrm{~V}_{\text {CC }}$
Option D:	$2 / 5 \mathrm{~V}_{\mathrm{CC}}$
11.	The output pulse width of a monostable multivibrator using 555 where R and C are the external components is
Option A:	RC
Option B:	1.1 RC
Option C:	(2/3) RC
Option D:	(1/3) RC
12.	In an Astable multivibrator if $\mathrm{R}_{\mathrm{A}}=25 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{B}}=33 \mathrm{k} \Omega, \mathrm{C}=0.5 \mu \mathrm{~F}$, calculate discharging time of capacitor waveform
Option A:	11.43 ms
Option B:	20 ms
Option C:	12.5 ms
Option D:	10 ms
13.	In IC7805 the output voltage is
Option A:	5 V
Option B:	0 V
Option C:	8 V
Option D:	7 V
14.	For High voltage, High current voltage regulator using IC 723, output voltage and output currents respectively have one of the following correct values.
Option A:	Less than 7 V , greater than 150 mA
Option B:	Less than 7 V , less than 150 mA
Option C:	7 to 37 V , greater than 150 mA
Option D:	7 to 37 V , less than 150 mA
15.	Output voltage of LM317 can be adjusted from
Option A:	-1.2 V to 37 V
Option B:	-1.2 V to -37 V
Option C:	1.2 V to 37 V
Option D:	1.2 V to -37 V
16.	Which one of these ICs is a Voltage Controlled Oscillator?
Option A:	IC 565
Option B:	IC 566
Option C:	IC 555
Option D:	IC 723
17.	For a Phase Locked Loop which of the following is true?
Option A:	Lock in range > Capture range
Option B:	Lock in range < Capture range

Option C:	Lock in range = Capture range
Option D:	Lock in range $=$ half of Capture range
18.	An integrator circuit
Option A:	uses a resistor in its feedback circuit.
Option B:	uses an inductor in its feedback circuit.
Option C:	uses a capacitor in its feedback circuit.
Option D:	uses a diode in its feedback circuit.
19.	The instrumentation amplifier shown in diagram has $\mathbf{R}_{1}=\mathbf{R}_{\mathrm{F}}=\mathbf{2 5} \mathbf{k \Omega}, \mathbf{R}_{2}=$ $10 \mathrm{k} \Omega$, and R_{3} varying from 100Ω to $1 \mathrm{k} \Omega$, the voltage gain of the amplifier varies from
Option A:	10 to 100
Option B:	21 to 201
Option C:	1 to 101
Option D:	2 to 202
20.	Which of these circuits clips one half cycle of a sinusoidal waveform?
Option A:	Comparator
Option B:	Schmitt Trigger
Option C:	Half Wave Precision Rectifier
Option D:	Peak detector

Q2	Solve any Two Questions out of Three (10 marks each)
A	Design a second order low pass Butterworth filter for cut off frequency of 10 kHz.
B	With the help of a functional block diagram explain the working of PLL IC 565.
C	Design an astable multivibrator using IC 555 for frequency 1 kHz \& duty cycle 50%. Assume C $=0.1 \mu \mathrm{~F}$.
Q3	Solve any Two Questions out of Three \quad (10 marks each)
A	Design a voltage regulator using 723 to deliver an output voltage of 15 V and load lurrent upto 50 mA.
B	With help of a neat circuit diagram and voltage transfer characteristics explain the working of a non- inverting Schmitt trigger.

[^0]
University of Mumbai

Examination June 2021
Examinations Commencing from 1 June 2021
Program: Electronics \& Telecommunication
Curriculum Scheme: Rev2019
Examination: SE Semester: IV
Course Code: ECC 403 and Course Name: Linear Integrated Circuits
Time: 2 hours
Max. Marks: 80

Question Number	Correct Option
Q1.	A
Q2.	D
Q3.	B
Q4	A
Q5	A
Q6	A
Q7	D
Q8.	B
Q9.	B
Q10.	C
Q11.	B
Q12.	A
Q13.	C
Q14.	C
Q15.	B
Q16.	A
Q17.	C
Q18.	B
Q19.	C
Q20.	

[^0]: C
 Design a circuit to perform $\mathrm{Vo}=3 \mathrm{~V}_{2}-6 \mathrm{~V}_{1}$. Explain the working of the circuit.

