University of Mumbai

Examination June 2021

Examinations Commencing from 1st June 2021

Program: Electronics & Telecommunication

Curriculum Scheme: R2019

Examination: SE Semester IV

Course Code: ECC 403 and Course Name: Linear Integrated Circuit

Time: 2 hours

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
	compulsory and carry equal marks	
1	An ideal on amp requires infinite handwidth because	
Option A:	Signals can be amplified without attenuation	
Option B:	Output common-mode noise voltage is zero	
Option C:	Output voltage occurs simultaneously with input voltage changes	
Option D:	Output can drive infinite number of devices	
-		
2.	In an inverting amplifier using op-amp	
Option A:	The input is connected to the non-inverting terminal via resistor and inverting terminal is kept floating	
Option B:	The input is connected to the non-inverting terminal via resistor and inverting terminal is grounded	
Option C:	The input is connected to the inverting terminal via resistor and non- inverting terminal is kept floating	
Option D:	The input is connected to the inverting terminal via resistor and non- inverting terminal is grounded	
3.	For the difference amplifier shown below, the output voltage is given by $ \begin{array}{c} R \\ \nu_2 \circ R \\ \nu_1 \circ R \\ R \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	
Option A:	$v_0 = v_1 + v_2$	
Option B:	$v_0 = v_1 - v_2$	
Option C:	$v_0 = -v_1 + v_2$	
Option D:	$v_0 = -(v_1 + v_2)$	

4.	A current to voltage converter converts	
Option A:	Input current to proportional output voltage.	
Option B:	Input current to proportional output current.	
Option C:	Input voltage to proportional output voltage.	
Option D:	Input voltage to proportional output current.	
5.	The filter shown below has $R_1 = 27 \text{ k}\Omega$, $R_F = 15.8 \text{ k}\Omega$, $R_2 = R_3 = 33 \text{ k}\Omega$, $C_2 = C_3 = 0.0047 \mu\text{F}$ is a	
	R_F	
	$v_{in} \circ \cdots = \downarrow \qquad \qquad$	
Option A:	High Pass filter with cut off frequency $\approx 1 \text{ kHz}$	
Option B:	High Pass filter with cut off frequency $\approx 10 \text{ kHz}$	
Option C:	Low Pass filter with cut off frequency $\approx 1 \text{ kHz}$	
Option D:	Low Pass filter with cut off frequency $\approx 10 \text{ kHz}$	
6.	For a Wein Bridge oscillator, the RC networks in the feedback circuit have values of their resistances $R = 3.3 \text{ k}\Omega$ and capacitances $C = 0.047 \mu\text{F}$,	
Option A:	Its frequency of oscillation is $\approx 1 \text{ kHz}$	
Option B:	Its frequency of oscillation is $\approx 3.030 \text{ kHz}$	
Option C:	Its frequency of oscillation is $\approx 3.3 \text{ kHz}$	
Option D:	Its frequency of oscillation is $\approx 480 \text{ Hz}$	
	Its frequency of oscillation is \approx 480 Hz	
7.	Its frequency of oscillation is $\approx 480 \text{ Hz}$	
	Its frequency of oscillation is ≈ 480 HzFor a non inverting comparator, input signal and reference voltage are given to	
Option A:	Its frequency of oscillation is $\approx 480 \text{ Hz}$ For a non inverting comparator, input signal and reference voltage are given to inverting terminal of the op-amp through separate resistors	
Option A: Option B:	Its frequency of oscillation is ≈ 480 Hz For a non inverting comparator, input signal and reference voltage are given to inverting terminal of the op-amp through separate resistors non-inverting terminal of the op-amp through separate resistors	
Option A: Option B: Option C:	Its frequency of oscillation is $\approx 480 \text{ Hz}$ For a non inverting comparator, input signal and reference voltage are given to inverting terminal of the op-amp through separate resistors non-inverting terminal of the op-amp through separate resistors inverting terminal and non-inverting terminal of the op-amp respectively	
Option A: Option B: Option C: Option D:	Its frequency of oscillation is $\approx 480 \text{ Hz}$ For a non inverting comparator, input signal and reference voltage are given to inverting terminal of the op-amp through separate resistors non-inverting terminal of the op-amp through separate resistors inverting terminal and non-inverting terminal of the op-amp respectively non-inverting terminal and inverting terminal of the op-amp respectively	
Option A: Option B: Option C: Option D: 8	Its frequency of oscillation is ≈ 480 Hz For a non inverting comparator, input signal and reference voltage are given to inverting terminal of the op-amp through separate resistors non-inverting terminal of the op-amp through separate resistors inverting terminal and non-inverting terminal of the op-amp respectively non-inverting terminal and inverting terminal of the op-amp respectively An Inverting Schmitt trigger employs	
Option A: Option B: Option C: Option D: 8. Option A:	Its frequency of oscillation is ≈ 480 Hz For a non inverting comparator, input signal and reference voltage are given to inverting terminal of the op-amp through separate resistors non-inverting terminal of the op-amp through separate resistors inverting terminal and non-inverting terminal of the op-amp respectively non-inverting terminal and inverting terminal of the op-amp respectively An Inverting Schmitt trigger employs Only Negative feedback	
Option A: Option B: Option C: Option D: 8. Option A: Option B:	Its frequency of oscillation is ≈ 480 Hz For a non inverting comparator, input signal and reference voltage are given to inverting terminal of the op-amp through separate resistors non-inverting terminal of the op-amp through separate resistors inverting terminal and non-inverting terminal of the op-amp respectively non-inverting terminal and inverting terminal of the op-amp respectively An Inverting Schmitt trigger employs Only Negative feedback Only Positive feedback	
Option A: Option B: Option C: Option D: 8. Option A: Option B: Option C:	Its frequency of oscillation is ≈ 480 Hz For a non inverting comparator, input signal and reference voltage are given to inverting terminal of the op-amp through separate resistors non-inverting terminal of the op-amp through separate resistors inverting terminal and non-inverting terminal of the op-amp respectively non-inverting terminal and inverting terminal of the op-amp respectively An Inverting Schmitt trigger employs Only Negative feedback Both Negative and Positive feedback	
Option A: Option B: Option C: Option D: 8. Option A: Option B: Option C: Option D:	Its frequency of oscillation is ≈ 480 Hz For a non inverting comparator, input signal and reference voltage are given to inverting terminal of the op-amp through separate resistors non-inverting terminal of the op-amp through separate resistors inverting terminal and non-inverting terminal of the op-amp respectively non-inverting terminal and inverting terminal of the op-amp respectively An Inverting Schmitt trigger employs Only Negative feedback Only Positive feedback No feedback	
Option A: Option B: Option C: Option D: 8. Option A: Option B: Option C: Option D:	Its frequency of oscillation is ≈ 480 Hz For a non inverting comparator, input signal and reference voltage are given to inverting terminal of the op-amp through separate resistors non-inverting terminal of the op-amp through separate resistors inverting terminal and non-inverting terminal of the op-amp respectively non-inverting terminal and inverting terminal of the op-amp respectively An Inverting Schmitt trigger employs Only Negative feedback Only Positive feedback No feedback	
Option A: Option B: Option C: Option D: 8. Option A: Option A: Option C: Option D: 9.	Its frequency of oscillation is ≈ 480 Hz For a non inverting comparator, input signal and reference voltage are given to inverting terminal of the op-amp through separate resistors non-inverting terminal of the op-amp through separate resistors inverting terminal and non-inverting terminal of the op-amp respectively non-inverting terminal and inverting terminal of the op-amp respectively An Inverting Schmitt trigger employs Only Negative feedback Only Positive feedback No feedback No feedback No feedback Only regative and Positive feedback No feedback No feedback Only notifies the provide the op-amp respectively	
Option A: Option B: Option C: Option D: 8. Option A: Option B: Option C: Option D: 9. 9.	Its frequency of oscillation is ≈ 480 Hz For a non inverting comparator, input signal and reference voltage are given to inverting terminal of the op-amp through separate resistors non-inverting terminal of the op-amp through separate resistors inverting terminal and non-inverting terminal of the op-amp respectively non-inverting terminal and inverting terminal of the op-amp respectively An Inverting Schmitt trigger employs Only Negative feedback Only Positive feedback Both Negative and Positive feedback No feedback A square waveform having ON time greater than its OFF time is fed as input to an integrator. The resulting output of the integrator is called Triangular waveform	
Option A: Option B: Option C: Option D: 8. Option A: Option B: Option C: Option D: 9. 9. Option A: Option A: Option B:	Its frequency of oscillation is ≈ 480 Hz For a non inverting comparator, input signal and reference voltage are given to inverting terminal of the op-amp through separate resistors non-inverting terminal of the op-amp through separate resistors inverting terminal and non-inverting terminal of the op-amp respectively non-inverting terminal and inverting terminal of the op-amp respectively An Inverting Schmitt trigger employs Only Negative feedback Only Positive feedback Both Negative and Positive feedback No feedback A square waveform having ON time greater than its OFF time is fed as input to an integrator. The resulting output of the integrator is called Triangular waveform Sawtooth waveform	
Option A: Option B: Option C: Option D: 8. Option A: Option C: Option D: 9. Option A: Option B: Option B: Option B: Option C:	Its frequency of oscillation is ≈ 480 Hz For a non inverting comparator, input signal and reference voltage are given to inverting terminal of the op-amp through separate resistors non-inverting terminal of the op-amp through separate resistors inverting terminal and non-inverting terminal of the op-amp respectively non-inverting terminal and inverting terminal of the op-amp respectively An Inverting Schmitt trigger employs Only Negative feedback Only Positive feedback Both Negative and Positive feedback No feedback A square waveform having ON time greater than its OFF time is fed as input to an integrator. The resulting output of the integrator is called Triangular waveform Sawtooth waveform Inverted Square waveform	

10.	The reference voltage of upper comparator used in functional block diagram of IC	
	555 is	
Option A:	1/5 V _{CC}	
Option B:	1/3 V _{CC}	
Option C:	2/3 V _{CC}	
Option D:	2/5 V _{CC}	
11.	The output pulse width of a monostable multivibrator using 555 where R and C are	
	the external components is	
Option A:	RC	
Option B:	1.1 RC	
Option C:	(2/3) RC	
Option D:	(1/3) RC	
12.	In an Astable multivibrator if $R_A=25K\Omega$, $R_B=33k\Omega$, C=0.5µF, calculate	
	discharging time of capacitor waveform	
Option A:	11.43 ms	
Option B:	20 ms	
Option C:	12.5 ms	
Option D:	10 ms	
13.	In IC7805 the output voltage is	
Option A:	x: 5 V	
Option B:	0 V	
Option C:	8 V	
Option D:	7 V	
14.	For High voltage, High current voltage regulator using IC 723, output voltage and	
	output currents respectively have one of the following correct values.	
Option A:	Less than 7 V, greater than 150 mA	
Option B:	Less than 7 V, less than 150 mA	
Option C:	7 to 37 V, greater than 150 mA	
Option D:	7 to 37 V, less than 150 mA	
15.	Output voltage of LM317 can be adjusted from	
Option A:	: -1.2 V to 37 V	
Option B:	-1.2 V to -37 V	
Option C:	1.2 V to 37 V	
Option D:	D: 1.2 V to -37 V	
16.	Which one of these ICs is a Voltage Controlled Oscillator?	
Option A:	IC 565	
Option B:	IC 566	
Option C:	IC 555	
Option D:	IC 723	
17.	For a Phase Locked Loop which of the following is true?	
Option A:	Lock in range > Capture range	
Option B:	Lock in range < Capture range	

Option C:	Lock in range = Capture range	
Option D:	Lock in range = half of Capture range	
18.	An integrator circuit	
Option A:	uses a resistor in its feedback circuit.	
Option B:	uses an inductor in its feedback circuit.	
Option C:	uses a capacitor in its feedback circuit.	
Option D:	uses a diode in its feedback circuit.	
19.	The instrumentation amplifier shown in diagram has $R_1 = R_F = 25 \text{ k}\Omega$, $R_2 =$	
	10 k Ω , and R ₃ varying from 100 Ω to 1 k Ω , the voltage gain of the amplifier	
	varies from	
	V2 ° +	
	$R_3 \neq \frac{R_2}{R}$	
	$R_1 \notin P$	
Option A:	10 to 100	
Option B:	21 to 201	
Option C:	1 to 101	
Option D:	2 to 202	
20.	Which of these circuits clips one half cycle of a sinusoidal waveform?	
Option A:	Comparator	
Option B:	Schmitt Trigger	
Option C:	Half Wave Precision Rectifier	
Option D:	Peak detector	

Q2	Solve any Two Questions out of Three	(10 marks each)	
А	A Design a second order low pass Butterworth filter for cut off frequency of 10 k		
В	With the help of a functional block diagram explain the working of PLL IC 565.		
С	Design an astable multivibrator using IC 555 for f	requency 1 kHz & duty cycle	
C	50% . Assume C = 0.1μ F.		
Q3	Solve any Two Questions out of Three	(10 marks each)	
А	A Design a voltage regulator using 723 to deliver an output voltage of 15 V and loa		
	current upto 50 mA.		
В	With help of a neat circuit diagram and voltage tran	sfer characteristics explain the	
	working of a non- inverting Schmitt trigger.		

C Design a circuit to perform $Vo = 3V_2 - 6V_1$. Explain the working of the circuit		
	С	Design a circuit to perform $Vo = 3V_2 - 6V_1$. Explain the working of the circuit.

University of Mumbai

Examination June 2021

Examinations Commencing from 1st June 2021

Program: Electronics & Telecommunication

Curriculum Scheme: Rev2019

Examination: SE Semester: IV

Course Code: ECC 403 and Course Name: Linear Integrated Circuits

Time: 2 hours

Г

Max. Marks: 80

Question Number	Correct Option
Q1.	Α
Q2.	D
Q3.	В
Q4	А
Q5	А
Q6	А
Q7	D
Q8.	В
Q9.	В
Q10.	С
Q11.	В
Q12.	А
Q13.	А
Q14.	С
Q15.	С
Q16.	В
Q17.	А
Q18.	С
Q19.	В
Q20.	С