University of Mumbai

Examination 2020 under cluster \qquad (Lead College: \qquad)
Examinations Commencing from 15 ${ }^{\text {th }}$ June to $26^{\text {th }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE Semester III(for Direct Second Year-DSE)
Course Code: CSC305 and Course Name: Computer Graphics
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	What is not included in computer graphics
Option A:	A single image stored on computer
Option B:	Multiple images stored on computer
Option C:	A video file stored on computer
Option D:	An audio file stored on computer
2.	In DDA line drawing method, for lines having positive slope greater than 1 and taking right end point as starting point, the X and Y coordinate increments are
Option A:	1 and m
Option B:	$1 / \mathrm{m}$ and 1
Option C:	$-1 / \mathrm{m}$ and -1
Option D:	-1 and -m
3.	Which of the following line drawing method uses swapping of two terms I) DDA line method II) II)Bresenham's line method
Option A:	Only I
Option B:	Only II
Option C:	Both I and II
Option D:	Neither I nor II
4.	Due to aliasing effect the line appears
Option A:	Straight
Option B:	Curved
Option C:	Zigzag
Option D:	Clipped
5.	In ellipse, at the boundary of region 1 and region 2, the slope of tangent is
Option A:	-1
Option B:	1
Option C:	0
Option D:	∞
6.	What is the last point computed in quadrant 1 on the circumference of an ellipse centered at $(10,10)$ with $R x=10$ and $\mathrm{Ry}=20$, using midpoint ellipse method

Option A:	$(10,0)$
Option B:	$(20,0)$
Option C:	$(10,20)$
Option D:	$(20,10)$
7.	Which of the following transformations when performed in succession are additive in nature I) Translation II) Rotation III) Scaling
Option A:	I and II
Option B:	II and III
Option C:	I and III
Option D:	I, II and III
8.	Transformation used for zooming in computer graphics is
Option A:	Translation
Option B:	Rotation
Option C:	Scaling
Option D:	Reflection
9.	In window to viewport mapping, which of the following transformations are used I) Translation II) Rotation III) Scaling
Option A:	I, II and III
Option B:	1 and II
Option C:	II and III
Option D:	I and III
10.	All the points, lines, polygons that are clipped are mapped onto \qquad for display.
Option A:	Window
Option B:	Viewport
Option C:	Display area
Option D:	Clipping window
11.	The coordinates of clipping window are $(4,4)$ and $(9,8)$. The region code of point $(12,9)$ is
Option A:	0010
Option B:	1010
Option C:	1000
Option D:	0100
12.	In Liang Barsky line clipping method, the parameter p for left boundary is
Option A:	$-\left(x_{2}-x_{1}\right)$
Option B:	$\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$

Option C:	$-\left(y_{2}-y_{1}\right)$
Option D:	$\left(y_{2}-y_{1}\right)$
13.	3D reflection matrix are given about
Option A:	One principle plane
Option B:	Two principle plane
Option C:	Three principle plane
Option D:	Four principle plane
14.	Inverse translation produces the translation in the
Option A:	Same direction
Option B:	Direction of - X axis
Option C:	Direction of -Y axis
Option D:	Opposite direction
15.	Following matrix represents $\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & \sin \theta & 0 \\ 0 & -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$
Option A:	3D reflection about Y axis
Option B:	3D rotation about Y axis
Option C:	3D rotation about X axis
Option D:	3D reflection about X axis
16.	As the number of pixels on the screen is increased, it improves
Option A:	Aspect ratio
Option B:	Image size
Option C:	Resolution
Option D:	Window size
17.	Any line that has 1 in the same bit position, in the region codes of each end point is
Option A:	Completely inside
Option B:	Completely outside
Option C:	Partially inside
Option D:	Cannot comment on visibility of line
18.	When scaling transformation with $\mathrm{S}_{\mathrm{x}}=2$ and $\mathrm{S}_{\mathrm{y}}=2$ is applied to a point, then there is a change in its
Option A:	Shape
Option B:	Size
Option C:	Position
Option D:	Orientation
19.	In depth buffer method, when $\mathrm{z}<$ depth of (x, y) then z value is
Option A:	stored in visible buffer
Option B:	Stored in depth buffer
Option C:	Stored in refresh buffer

Option D:	Stored in intensity buffer
20.	Image space methods deal with
Option A:	Pixels
Option B:	Lines
Option C:	Surfaces
Option D:	Curves

Q2	
A	Solve any Two
i.	Define computer graphics and give its application areas.
ii.	Define animation and discuss traditional animation techniques
iii.	Explain homogeneous coordinates in computer graphics
B	Solve any One
i.	Derive the mid point ellipse drawing algorithm
ii.	Find the clipping coordinates to clip the line segment AB against the window using Liang Barsky line clipping algorithm. A(20,50) B(80,110) $\mathrm{X}_{\text {wmin }}=40 \quad Y_{\text {wmin }}=40$ $X_{\text {wmax }}=100 \quad Y_{\text {wmax }}=90$

Q3	
A	Solve any Two
i.	What is aliasing effect? Discuss any one antialiasing technique.
ii.	Explain with suitable diagram window to viewport transformation
iii.	A rectangle ABCD with coordinates A(2,2), B(4,2), C(4,4) and D $(2,4)$. Translate the given rectangle 20 units in X direction and 10 units in Y direction. Calculate the new co-ordinates of rectangle ABCD.
B	Solve any One
i.	Calculate pixel positions along a straight line between A(20,20) and B(10,12) using Bresenham's line drawing method
ii.	Explain Z buffer algorithm with suitable diagram

University of Mumbai
Examination 2020 under cluster __ (Lead College: \qquad
Examinations Commencing from $15^{\text {th }}$ June to $\mathbf{2 6}^{\text {th }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE Semester III(for Direct Second Year-DSE)
Course Code: CSC305 and Course Name: Computer Graphics
Time: 2 hour
Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	C
Q3.	B
Q4	C
Q5	A
Q6	D
Q7	A
Q8.	C
Q9.	D
Q10.	B
Q11.	B
Q12.	A
Q13.	C
Q14.	D
Q15.	C
Q16.	C
Q17.	B
Q18.	C
Q19.	B
Q20.	A

Question	Expected Ans	Marks
Q2 B ii	$\Delta x=60$ and $\Delta y=60$	10
	$\mathrm{U} 1=1 / 3$ and U2 $=2 / 3$	
	End points of line after clipping are $\mathrm{A}(40,70)$ and $\mathrm{B}(60,90)$	
	Iteration corresponding to each boundary must show formula and values computation	
Q3 A iii	New coordinates are : $\mathrm{A}(22,12), \mathrm{B}(24,12), \mathrm{C}(24,14)$ and $\mathrm{D}(22,14)$.	5
	Translation matrix using homogeneous coordinates is expected	
Q3 B i	$\Delta \mathrm{x}=10 \quad \Delta \mathrm{y}=8$	10
	Points plotted are $(20,20),(19,19),(18,18),(17,18),(16,17),(15,16)$, $(14,15),(13,14),(12,14),(11,13),(10,12)$	
	At each iteration decision parameter formula and value computation is expected.	

