University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examination for Direct Second Year Students Commencing from 10 ${ }^{\text {th }}$ April 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III (For DSE Students)
Course Code: ELC303 and Course Name: Digital Logic Circuits
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Convert Decimal(105) 10 $^{\text {to Binary }}$
Option A:	$(101001)_{2}$
Option B:	$(1101001)_{2}$
Option C:	$(1110101)_{2}$
Option D:	$(1001011)_{2}$
2.	In Hamming code, which expression will help you to find out the number of parity bits.
Option A:	$2^{P}>=P+M+1$
Option B:	$2^{P}<=P+M+1$
Option C:	$2^{P}=P+M-1$
Option D:	$2^{\mathrm{P}}<=\mathrm{P}+\mathrm{M}-1$
3.	What is the reflected binary code of (100101) ${ }_{2}$.
Option A:	111000
Option B:	101010
Option C:	101111
Option D:	110111
4.	A multiplexer with 3 select lines is a
Option A:	4:1 multiplexer
Option B:	8:1 multiplexer
Option C:	16:1 multiplexer
Option D:	32:1 multiplexer
5.	IC 74138 is a
Option A:	3:8 line decoder
Option B:	1:8 line decoder
Option C:	4:8 line decoder
Option D:	any lines to 8 line decoder
6.	Which of the following ICs can be used as a comparator?
Option A:	IC7408
Option B:	IC7400

Option C:	IC7485
Option D:	IC7420
7.	In which type of machine the output depends on the present state and external input.
Option A:	Mealy machine
Option B:	Sequential asynchronous machine
Option C:	Asynchronous machine
Option D:	Moore machine
8.	IC 7492 is a
Option A:	MOD 12 Asynchronous counter
Option B:	MOD 12 Synchronous counter
Option C:	MOD 16 Asynchronous counter
Option D:	MOD 16 Synchronous counter
9.	Which of the following is a decade counter?
Option A:	IC 7493
Option B:	IC 7490
Option C:	IC 7491
Option D:	IC 7492
10.	Which one of the following methods can be used for state reduction?
Option A:	K-Maps
Option B:	Implication Chart method
Option C:	Truth Table
Option D:	Quine Mcclusky method
11.	Which of the given logic family dissipates minimum power
Option A:	TTL
Option B:	CMOS
Option C:	DTL
Option D:	ECL
12.	IC 74194 is a
Option A:	Ring counter
Option B:	4-bit bidirectional universal shift register
Option C:	Unidirectional shift register
Option D:	4-bit register
13.	What does FPGA stand for
Option A:	Field Programming Gate Array
Option B:	Field Programmable Gate Array
Option C:	First Program Gate Array
Option D:	First Programmable Gate Array
14.	Programmable Array Logic has
Option A:	a programmable AND and fixed OR array
Option B:	a programmable AND and a programmable OR array

Option C:	only a programmable AND array
Option D:	only a programmable OR array
15.	The number of similar gates which can be driven by a gate is called as
Option A:	Power dissipation
Option B:	Noise margin
Option C:	Fan-out
Option D:	Speed
16.	A CPLD device consist of
Option A:	PAL-Like Blocks, I/O blocks, and a set of interconnection wires
Option B:	PLA-Like Blocks and I/O blocks
Option C:	FPGAs
Option D:	Only interconnecting wires
17.	Which type of modeling style is not used in verilog hardware description language
Option A:	Structural
Option B:	Datatype
Option C:	Behavioral
Option D:	Data Flow
18.	
Option A:	reg
Option B:	integer a net data type used in Verilog.
Option C:	real
Option D:	wire
Option A:	Register data type in Verilog HDL is denoted as
Option B:	register
Option C:	RG
Option D:	wire
20.	Comment lines in Verilog HDL is denoted by
Option A:	$/ /$
Option B:	\backslash
Option C:	$1 \\) \\ \hline Option D: & \(*$

Q2 (20 Marks)	
A	Solve any Two 5 marks each
i.	Explain with neat diagrams working of IC7483
ii.	State the differences between mealy and moore machine.
iii.	Write a short note on Complex Programmable Logic Devices.

B	Solve any One 10 marks each
i.	Design a MOD-6 counter using IC7490.
ii.	Write a program using Verilog HDL to implement a 8:1 multiplexer.
Q3	
(20 Marks)	Solve any Two 5 marks each
A	Explain with suitable diagrams working of IC74163.
i.	Write a program using Verilog HDL for implementing a half adder.
ii.	Solve any One 10 marks each
iii.	Analyze the given state machine and draw the state diagram.
B	
ii.	

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examination for Direct Second Year Students Commencing from 10 ${ }^{\text {th }}$ April 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III (For DSE Students)
Course Code: ELC303 and Course Name: Digital Logic Circuits
Time: 2 hour

Q1:

Question Number	Correct Option (Enter either ' A ' or ' B ' or 'C' or 'D')
Q1.	B
Q2.	A
Q3.	D
Q4	B
Q5	A
Q6	C
Q7	A
Q8.	A
Q9.	B
Q10.	B
Q11.	B
Q12.	B
Q13.	B
Q14.	A
Q15.	C
Q16.	A
Q17.	B
Q18.	D
Q19.	A
Q20.	A

Important steps and final answer for the questions involving numerical example Q2(A):
(i)IC7483 4 bit Binary Adder

- IC 7483 -Four bit Binary Adder IC
- 4 bit Binary Number A ,4 bits are A3,A2,A1,A0
- 4 bit Binary Number B, 4 bits are B3,B2,B1,B0
- Cin, Cout

Sum we will get at $\mathrm{S} 3, \mathrm{~S} 2, \mathrm{~S} 1, \mathrm{~S} 0$

Q2B(i) Asynchronous BCD Decade counter IC 7490

Set pins are active low and reset pins are active high

Step2 :Equations

$$
\begin{aligned}
& A^{+}=D_{A}=X \oplus B^{\prime} \\
& B^{+}=D_{B}=A+X
\end{aligned}
$$

$\mathrm{Z}=\mathrm{A}$ XOR B
Step3:State transition table

Present State $\mathbf{A B}$	Input \mathbf{X}	Next State $\mathbf{A}^{+} \mathbf{B}^{+}$	Current Output \mathbf{Z}
00	0	10	0
	1	01	
01	0	00	1
	1	11	
10	0	11	1
	1	01	
11	0	01	0
	1	11	

Step 4: State assignment
$\mathrm{S}_{0}=00, \mathrm{~S}_{1}=01, \mathrm{~S}_{2}=10, \mathrm{~S}_{3}=11$
Step 5: State Diagram

input A, B;
output Sum, Carry;
assign Sum $=\mathrm{A}^{\wedge} \mathrm{B} ; / / \wedge$ denotes XOR assign Carry $=\mathrm{A} \& \mathrm{~B} ; / / \&$ denotes AND endmodule

Q3B(ii)

Step1:Moore machine

