University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examination for Direct Second Year Students Commencing from 10th April 2021

Program: Electronics Engineering

Curriculum Scheme: Rev 2019

Examination: SE Semester III (For DSE Students)

Course Code: ELC302 and Course Name: Electronic Devices and Circuits I

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	Fermi energy level for n-type semiconductors liesand P type		
	semiconductor lies		
Option A:	Close to conduction band, Close to valence band		
Option B:	Close to conduction band, Close to conduction band		
Option C:	Close to valence band, Close to conduction band		
Option D:	Close to valence band, Close to valence band		
2.	In any semiconductor material, the drift current is proportional to		
Option A:	Concentration gradient of charge carriers		
Option B:	Square of applied electric field		
Option C:	Applied electric field		
Option D:	Cube of applied electric field		
3.	In fixed bias circuit using an NPN transistor, if VCC =12V, VBE=0.7V, Base		
	resistor RB= 240 k then I_B is		
Option A:	80 µA		
Option B:	47 μΑ		
Option C:	50 μA		
Option D:	130 mA		
4.	H parameter model consists of components such as		
Option A:	small signal resistance rpi and a dependent current source gmVpi		
Option B:	input impedance, reverse voltage gain, current gain and output conductance		
Option C:	small signal resistance re and a controlled current source		
Option D:	small signal resistance rpi and an independent current source gmVpi		
5.	Which Configuration has a high input impedance and low output impedance		
Option A:	Common Collector Configuration		
Option B:	Common Base Configuration		
Option C:	Common Emitter Configuration		
Option D:	Collector Base Configuration		
6.	In a bipolar junction transistor (BJT) if $\beta = 100$ & collector current (IC) is 0.93		
	mA then what is the value of base current (IB) ?		
Option A:	9.3 μA		
Option B:	0.93 μA		

Option C:	93 µA		
Option D:	93 mA		
7.	To operate transistor in its forward active / linear mode of operation base emitter		
	junction is and the collector base junction is		
Option A:	reverse biased, forward biased		
.Option B:	reverse biased, reverse biased		
Option C:	forward biased ,reverse biased		
Option D:	forward biased, forward biased		
8.	The voltage gain of a common base amplifier is		
Option A:	Zero		
Option B:	Less than unity		
Option C:	Unity		
Option D:	Greater than unity		
-			
9.	The relation between α and β is		
Option A:	$\alpha = (1+\beta)/\beta$		
Option B:	$\alpha = \beta/(1+\beta)$		
Option C:	$\alpha = \beta/(1-\beta)$		
Option D:	$\alpha = (1-\beta)/\beta$		
•			
10.	In case of DMOSFET drain current I _D depends upon		
Option A:	Vdd		
Option B:	I _G		
Option C:	V _{GS}		
Option D:	Is		
11.	For E-MOSFETs, the relationship between output current and controlling voltage		
	is defined by		
Option A:	$ID = [(VGS-VGS(Th))]^2$		
Option B:	$ID=k [(VGS-VSB)]^2$		
Option C:	$ID=k [(VGS-VDS)]^2$		
Option D:	$ID=k [(VGS-VGS(Th))]^2$		
12.	The N channel connecting two N regions is absent in		
Option A:	N channel DMOSFET		
Option B:	N channel EMOSFET		
Option C:	P channel DMOSFET		
Option D:	P channel EMOSFET		
13.	The biasing method used for EMOSFET are voltage divider biasing circuit and		
Option A:	self bias circuit		
Option B:	fixed bias		
Option C:	collector to base bias circuit		
Option D:	feedback biasing circuit		
14.	The input impedance of the MOSFET is very high .Give reason		
Option A:	The Sio ₂ layer is present between gate terminal and channel.		
Option B:	Metallic contacts are used for connecting the Drain, gate and source terminals		

Option C:	A P type semiconductor is used as a substrate.		
Option D:	A N type semiconductor is used as a substrate.		
15.	A common drain amplifier has voltage gain		
Option A:	Slightly less than 1.		
Option B:	Greater than 1		
Option C:	Infinite		
Option D:	Zero		
16.	Input signal of common source amplifier is applied to		
Option A:	Source terminal		
Option B:	Gate terminal		
Option C:	Drain terminal		
Option D:	Substrate terminal		
17.	Phase difference between input and output of a source follower circuit is		
Option A:	0 degree		
Option B:	90 degrees		
Option C:	180 degrees		
Option D:	45 degrees		
18.	For the CS amplifier circuit calculate voltage gain Av if $g_{m=} 200$ micro A/V and		
	$RD=14K\Omega$		
Option A:	-2.8		
Option B:	2.8		
Option C:	4.8		
Option D:	-4.8		
19.	Reactance of capacitor is given by		
Option A:	$Xc = 1/2 \pi f C$		
Option B:	$Xc = 1/2 \pi R C$		
Option C:	$Xc = 1 / 2 \pi L C$		
Option D:	$Xc = 1/2 \pi R L$		
20.	In the design steps for RC coupled CE amplifiers, the voltage drop across emitter		
	resistor R _E should be as compared to base emitter voltage of transistor		
Option A:	lower		
Option B:	higher		
Option C:	same		
Option D:	Zero		

Q2. (20 Marks)	
Q.2 A)	Solve any two out of three (5 marks each)
i.	Draw Energy band diagram of PN junction diode under Forward biased, Reverse biased and Zero biased.
ii.	Compare CE, CB, CC Configurations of BJT.
iii.	Explain hybrid π model of BJT.
Q2. B)	Solve any One Question out of two. (10 marks each)
i.	Design a single stage RC Coupled CE amplifier using transistor with given specifications as $ Av =70$, Vo rms=4.5V, $F_L=10$ Hz , $V_{CE(SAT)=}1V$, hfe= 180, hie=2.7K Ω and S< 8.
ii.	Draw the neat diagram of voltage divider biased CS MOSFET amplifier and source resistance bypass and derive the expression for the voltage gain.

В	$O + \frac{12}{V}$ $90K\Omega$ R_1 C_2 R_2
С	Design a single stage RC Coupled CE amplifier using transistor with following specifications. hfe=220, hie=2.7K Ω , Av =180, S=10, Vo=3V, Vcc=18V, F _L =20Hz,V _{CE(SAT)=} 1V

University of Mumbai Examination 2021 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examination for Direct Second Year Students Commencing from 10th April 2021 Program: Electronics Engineering Curriculum Scheme: Rev 2019 Examination: SE Semester III (For DSE Students)

Course Code: ELC302 and Course Name: Electronic Devices and Circuits I

Time: 2 hour

Max. Marks: 80

Q1:

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	А
Q2.	С
Q3.	В
Q4	В
Q5	А
Q6	А
Q7	С
Q8.	D
Q9.	В
Q10.	С
Q11.	D
Q12.	В
Q13.	D
Q14.	А
Q15.	А
Q16.	В
Q17.	A
Q18.	A
Q19.	A
Q20.	В

Important steps and final answer for the questions involving numerical example

Question number.3 A) SOLUTION

g. 3. A) find Jog, Vosq 1 +400 ARD BRH CO NO $\frac{R_{D}}{3k} = \frac{VasC_{HD} = 5v}{T_{D} cond} = \frac{5v}{3mA}$ $\frac{VasC_{D}}{ca} = \frac{VasC_{D}}{vasC_{D}} = \frac{1}{3mA}$ 22m 3 Vin It 2 Rs 8202 Ra 18m] D. find K $\frac{find K}{[Vas(ch) - Vas(Th)]^2} = \frac{3 \times 10^{-2}}{[Vas(ch) - Vas(Th)]^2} = \frac{3 \times 10^{-2}}{[10-5]}$ find $J_D = K [V_{4S} - V_{4S}(THD)]^2$ but Vas = Va - Us R2 XVDD - JORS RITR2 2= 5=2 45 VEB - -18 × 40 - \$20 Jo 18+22 : JO= 1.2×154[18- 820 JD-ID = 6.69 mA or 37.4 mA select Jo = 6.69 mA 3 find V DSQ VDSQ = VDD- ID (RD+RS) = 40 - 669 × 103 (3×10 = 14.44V

Question number.3 B SOLUTION

Criven RI=90K, RZ=10K - 0+12V 2-2)-CC VO $R_{c} = 2.2k_{2}, R_{e} = 500$ $V_{BE} = 0.7V$ JOK (s HE \$ 500 2 T CS 13=100 lok find AV, Ri & Ro $V_{ln} = \frac{R^2}{R_1 + R^2} \frac{\chi V(c = \frac{10k}{30k + 10k})}{\frac{30k}{R_1 + R^2}} \frac{10k}{30k + 10k} \frac{\chi I_2}{R_1} = \frac{12}{30k}$ Rth = R₁)| R₂ = 30k || 10k = 9k ① find IB TB = Vth - VBE = 1.2 - 0.7 = 8.4.4A Rth+(1+B)RE 9K+(10))0-5K IC = BIB = 100×8-4×10 = 0.84 mA Ac analysis $\frac{2}{3\pi} = \frac{V_T \times \beta}{T_C} = \frac{26mV \times 100}{0.84 \times 103} = \frac{3.095 \pm 0.00}{T_C}$ $= \frac{32 \cdot 3 \text{ mA}}{\text{V}}$ $\frac{J_{C}}{V_{T}} = 0.84 \text{ mA}$ gm= 26 mV Hybrid TI equivalent (kt 9mVn ZRth PErn REVO Rill Ri RM N = 3.095kr -0 RO Ril = Rth # YT = 9K113.09 K # = 2.3K $Av = -9m Rc = -32.3 \chi 2.2 = R_0 = R_0 = 2.2 K$ - 71.06