University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examination for Direct Second Year Students Commencing from 10 ${ }^{\text {th }}$ April 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III (For DSE Students)
Course Code: ELC302 and Course Name: Electronic Devices and Circuits I
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Fermi energy level for n-type semiconductors lies ------------and P type semiconductor lies
Option A:	Close to conduction band, Close to valence band
Option B:	Close to conduction band, Close to conduction band
Option C:	Close to valence band, Close to conduction band
Option D:	Close to valence band, Close to valence band
2.	In any semiconductor material, the drift current is proportional to
Option A:	Concentration gradient of charge carriers
Option B:	Square of applied electric field
Option C:	Applied electric field
Option D:	Cube of applied electric field
3.	In fixed bias circuit using an NPN transistor, if $\mathrm{VCC}=12 \mathrm{~V}, \mathrm{VBE}=0.7 \mathrm{~V}$, Base resistor $R B=240 \mathrm{k}$ then I_{B} is
Option A:	$80 \mu \mathrm{~A}$
Option B:	$47 \mu \mathrm{~A}$
Option C:	$50 \mu \mathrm{~A}$
Option D:	130 mA
4.	H parameter model consists of components such as
Option A:	small signal resistance rpi and a dependent current source gmVpi
Option B:	input impedance, reverse voltage gain, current gain and output conductance
Option C:	small signal resistance re and a controlled current source
Option D:	small signal resistance rpi and an independent current source gmVpi
5.	Which Configuration has a high input impedance and low output impedance
Option A:	Common Collector Configuration
Option B:	Common Base Configuration
Option C:	Common Emitter Configuration
Option D:	Collector Base Configuration
6.	In a bipolar junction transistor (BJT) if $\beta=100 \&$ collector current (IC) is 0.93 mA then what is the value of base current (IB) ?
Option A:	$9.3 \mu \mathrm{~A}$
Option B:	$0.93 \mu \mathrm{~A}$

Option C：	$93 \mu \mathrm{~A}$
Option D：	93 mA
7.	To operate transistor in its forward active／linear mode of operation base emitter junction is \qquad and the collector base junction is \qquad
Option A：	reverse biased，forward biased
．Option B：	reverse biased，reverse biased
Option C：	forward biased ，reverse biased
Option D：	forward biased，forward biased
8.	The voltage gain of a common base amplifier is
Option A：	Zero
Option B：	Less than unity
Option C：	Unity
Option D：	Greater than unity
9.	The relation between α and β is
Option A：	$\alpha=(1+\beta) / \beta$
Option B：	$\alpha=\beta /(1+\beta)$
Option C：	$\alpha=\beta /(1-\beta)$
Option D：	$\alpha=(1-\beta) / \beta$
10.	In case of DMOSFET drain current I_{D} depends upon
Option A：	Vdd
Option B：	I_{G}
Option C：	$\mathrm{V}_{\text {GS }}$
Option D：	$\mathrm{I}_{\text {S }}$
11.	For E－MOSFETs，the relationship between output current and controlling voltage is defined by
Option A：	$\mathrm{ID}=\llbracket(\mathrm{VGS}-\mathrm{VGS}(\mathrm{Th})) \rrbracket \wedge 2$
Option B：	$\mathrm{ID}=\mathrm{k}$ 【（VGS－VSB）】 ${ }^{\wedge}$
Option C：	$\mathrm{ID}=\mathrm{k}$ 【（VGS－VDS）】＾2
Option D：	$\mathrm{ID}=\mathrm{k}$ 【（VGS－VGS（Th））】 ${ }^{\text {2 }}$
12.	The N channel connecting two N regions is absent in
Option A：	N channel DMOSFET
Option B：	N channel EMOSFET
Option C：	P channel DMOSFET
Option D：	P channel EMOSFET
13.	The biasing method used for EMOSFET are voltage divider biasing circuit and－－－
Option A：	self bias circuit
Option B：	fixed bias
Option C：	collector to base bias circuit
Option D：	feedback biasing circuit
14.	The input impedance of the MOSFET is very high ．Give reason
Option A：	The Sio_{2} layer is present between gate terminal and channel．
Option B：	Metallic contacts are used for connecting the Drain，gate and source terminals

Option C:	A P type semiconductor is used as a substrate.
Option D:	A N type semiconductor is used as a substrate.
15.	A common drain amplifier has voltage gain
Option A:	Slightly less than 1.
Option B:	Greater than 1
Option C:	Infinite
Option D:	Zero
16.	Input signal of common source amplifier is applied to
Option A:	Source terminal
Option B:	Gate terminal
Option C:	Drain terminal
Option D:	Substrate terminal
17.	Phase difference between input and output of a source follower circuit is
Option A:	0 degree
Option B:	90 degrees
Option C:	180 degrees
Option D:	45 degrees
18.	For the CS amplifier circuit calculate voltage gain Av if $\mathrm{g}_{\mathrm{m}}=200$ micro A / V and $\mathrm{RD}=14 \mathrm{~K} \Omega$
Option A:	-2.8
Option B:	2.8
Option C:	4.8
Option D:	-4.8
19.	Reactance of capacitor is given by
Option A:	$\mathrm{Xc}=1 / 2 \pi \mathrm{fC}$
Option B:	$\mathrm{Xc}=1 / 2 \pi \mathrm{RC}$
Option C:	$\mathrm{Xc}=1 / 2 \pi \mathrm{LC}$
Option D:	$\mathrm{Xc}=1 / 2 \pi \mathrm{RL}$
20.	In the design steps for RC coupled CE amplifiers, the voltage drop across emitter resistor R_{E} should be \qquad as compared to base emitter voltage of transistor
Option A:	lower
Option B:	higher
Option C:	same
Option D:	Zero

Q2. $(\mathbf{2 0}$ Marks)	
$\mathbf{Q . 2 ~ A) ~}$	Solve any two out of three (5 marks each)
i.	Draw Energy band diagram of PN junction diode under Forward biased, Reverse biased and Zero biased.
ii.	Compare CE, CB, CC Configurations of BJT.
iii.	Explain hybrid π model of BJT.
Q2. B)	Solve any One Question out of two. (10 marks each)
i.	Design a single stage RC Coupled CE amplifier using transistor with given specifications as \mid Av\|=70, Vo rms=4.5V, $\mathrm{F}_{\mathrm{L}}=10 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{CE}(\mathrm{SAT)}=}=1 \mathrm{~V}$, hfe $=180$, hie=2.7K Ω and $\mathrm{S}<8$.
ii.	Draw the neat diagram of voltage divider biased CS MOSFET amplifier and source resistance bypass and derive the expression for the voltage gain.

$\begin{gathered} \hline \text { Q3). } \\ \text { (20 Marks) } \\ \hline \end{gathered}$	Solve any Two Questions out of Three (10 marks each)
A	Fig. 1 For the voltage divider bias circuit shown in Fig. 1 using N-channel $\mathrm{E}-\mathrm{MOSFET}, \mathrm{VDD}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}(\mathrm{TH})=} 5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}(\mathrm{ON})=3 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{GS}(\mathrm{ON})}=10 \mathrm{~V}$. Calculate Q - point where $\mathrm{Q}=\left[\mathrm{V}_{\mathrm{DSQ}}, \mathrm{I}_{\mathrm{DQ}}\right]$.

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examination for Direct Second Year Students Commencing from 10 ${ }^{\text {th }}$ April 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2019
Examination: SE Semester III (For DSE Students)
Course Code: ELC302 and Course Name: Electronic Devices and Circuits I

Q1:

Question Number	Correct Option Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	A
Q2.	C
Q3.	B
Q4	B
Q5	A
Q6	A
Q7	C
Q8.	D
Q9.	B
Q10.	C
Q11.	D
Q12.	B
Q13.	D
Q14.	A
Q15.	A
Q16.	B
Q17.	A
Q18.	A
Q19.	A
Q20.	B

Important steps and final answer for the questions involving numerical example

Question number. 3 A) SOLUTION

Question number. 3 B SOLUTION

