University of Mumbai Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: **DSE** Semester **III**

Course Code: ECC303 and Course Name: Digital System Design

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.	
1.	Convert binary number into gray code: 100101.	
Option A:	101101	
Option B:	001110	
Option C:	110111	
Option D:	111001	
2.	The representation of octal number (532.2)8 in decimal is	
Option A:	(346.25)10	
Option B:	(532.864)10	
Option C:	(340.67)10	
Option D:	(531.668)10	
3.	The octal number (651.124)8 is equivalent to	
Option A:	(1A9.2A)16	
Option B:	(1B0.10)16	
Option C:	(1A8.A3)16	
Option D:	(1B0.B0)16	
4.	How many AND gates are required to realize $Y = CD + EF + G$?	
Option A:	4	
Option B:	5	
Option C:	3	
Option D:	2	
5.	Which of the following is not a basic gate?	
Option A:	AND	
Option B:	OR	
Option C:	EXOR	
Option D:	NOT	
6.	A(A+B) = ?	
Option A:	AB	
Option B:	1	
Option C:	(1 + AB)	
Option D:	A	

7.	A Karnaugh map (K-map) is an abstract form of diagram	
	organized as a matrix of squares.	
Option A:	Venn Diagram	
Option B:	Cycle Diagram	
Option C:	Block diagram	
Option D:	Triangular Diagram	
8.	Odd parity of word can be conveniently tested by	
Option A:	OR gate	
Option B:	AND gate	
Option C:	NAND gate	
Option D:	XOR gate	
9.	If A and B are the inputs of a half adder, the sum is given by	
Option A:	A AND B	
Option B:	A OR B	
Option C:	A XOR B	
Option D:	A EX-NOR B	
10.	The output of a subtractor is given by (if A, B and X are the inputs).	
Option A:	A AND B XOR X	
Option B:	A XOR B XOR X	
Option C:	A OR B NOR X	
Option D:	A NOR B XOR X	
11.	The addition of two decimal digits in BCD can be done through	
Option A:	BCD adder	
Option B:	Full adder	
Option C:	Ripple carry adder	
Option D:	Carry look ahead	
10		
12.	Which of the following is correct for a D-type flip-flop?	
Option A:	The output follows the D input with each clock pulse.	
Option B:	The output complement follows the D input with each clock pulse	
Option C:	The output remains HIGH all the time	
Option D:	The output toggles with each clock pulse	
13.	In a Master Slave flip flop the output is taken	
Option A:	from the Master	
Option B:	from the Slave	
Option C:	from Master output ANDED with Slave output	
Option D:	from Master output ORED with Slave output	
opnon D.		
14.	How can parallel data be taken out of a shift register simultaneously?	
Option A:	Use the Q output of the first FF	
Option B:	Use the Q output of the last FF	
Option C:	Tie all of the Q outputs together	
Option D:	Use the Q output of each FF	

15.	PLA is used to implement	
Option A:	A complex sequential circuit	
Option B:	A simple sequential circuit	
Option C:	A complex combinational circuit	
Option D:	A simple combinational circuit	
16.	VHDL is being used for	
Option A:	Documentation only	
Option B:	Verification only	
Option C:	Synthesis only of digital design	
Option D:	Documentation, Verification and Synthesis of digital design	
17.	Where do we declare the loop index of a FOR LOOP?	
Option A:	Entity	
Option B:	Architecture	
Option C:	Library	
Option D:	It doesn't have to be declared	
18.	In delay flip-flop, after the propagation delay.	
Option A:	Input follows input	
Option B:	Input follows output	
Option C:	Output follows input	
Option D:	Output follows output	
19.	Comparators are used in	
Option A:	Memory	
Option B:	CPU	
Option C:	Motherboard	
Option D:	Hard drive	
20		
20.	A magnitude comparator is defined as a digital comparator which has	
Ontion A:	Only one output terminal	
Option A:	Only one output terminal	
Option B:	Two output terminals	
Option C:	Three output terminals No output terminal	
Option D:	I NO Output terminar	

Q2.	Answer the following:	
A	Solve any Two 5 marks each	
i.	State and prove Demorgan's theorem.	
ii.	Compare PAL with PLA.	
iii.	Perform the following operation using 2's complement. i) (14)BASE (10) - (24)BASE (10) ii) (24)BASE (10)- (14)BASE (10)	
В	Solve any One 10 marks each	
i.	Minimize the following expression using Quine MC-cluskey technique.	
	$F(A, B, C, D) = \sum M(0,1,2,3,5,7,9,11)$	
ii.	Prove that NAND and NOR gates are universal gates.	

Q3.	Answer the following:	
A	Solve any Two 5 marks each	2h
i.	Write the VHDL code for a full subtractor.	
ii.	Convert SR Flip flop to JK Flip flop.	
iii.	Design 3 bit full adder circuit and explain in detail.	
В	Solve any One 10 marks eac	:h
i.	What are shift registers? How are they classified? Explain working of any type of shift register.	
ii.	Draw and explain a neat circuit diagram of BCD adder.	

University of Mumbai Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: **DSE** Semester **III**

Course Code: ECC303 and Course Name: Digital System Design

Time: 2 hour Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	A
Q3.	A
Q4.	D
Q5.	С
Q6.	D
Q7.	A
Q8.	D
Q9.	С
Q10.	В
Q11.	A
Q12.	A
Q13.	В
Q14.	D
Q15.	С
Q16.	D
Q17.	D
Q18.	С
Q19.	В
Q20.	С