University of Mumbai

Examination June 2021
Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to $\mathbf{2 6}^{\text {th }}$ June 2021
Program: Bachelor of Engineering
Curriculum Scheme: Electronics \& Telecommunication (Rev2019 'C'Scheme)
Examination: DSE Semester III
Course Code: ECC303 and Course Name: Digital System Design
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	Convert binary number into gray code: 100101.
Option A:	101101
Option B:	001110
Option C:	110111
Option D:	111001
2.	The representation of octal number (532.2)8 in decimal is
Option A:	$(346.25) 10$
Option B:	$(532.864) 10$
Option C:	$(340.67) 10$
Option D:	$(531.668) 10$
3.	The octal number (651.124)8 is equivalent to
Option A:	$(1 \mathrm{~A} 9.2 \mathrm{~A}) 16$
Option B:	$(1 \mathrm{~B} 0.10) 16$
Option C:	$(1 \mathrm{~A} 8 . \mathrm{A} 3) 16$
Option D:	$(1 \mathrm{~B} 0 . \mathrm{B} 0) 16$
4.	How many AND gates are required to realize Y $=\mathrm{CD}+\mathrm{EF}+\mathrm{G} ?$
Option A:	4
Option B:	5
Option C:	3
Option D:	2
5.	Which of the following is not a basic gate?
Option A:	AND
Option B:	OR
Option C:	EXOR
Option D:	NOT
6.	A(A + B) $=?$
Option A:	AB
Option B:	1
Option C:	$(1+\mathrm{AB})$
Option D:	A

15.	PLA is used to implement
Option A:	A complex sequential circuit
Option B:	A simple sequential circuit
Option C:	A complex combinational circuit
Option D:	A simple combinational circuit
16.	VHDL is being used for
Option A:	Documentation only
Option B:	Verification only
Option C:	Synthesis only of digital design
Option D:	Documentation, Verification and Synthesis of digital design
17.	Where do we declare the loop index of a FOR LOOP?
Option A:	Entity
Option B:	Architecture
Option C:	Library
Option D:	It doesn't have to be declared
18.	In delay flip-flop,
Option A:	Input follows input
Option B:	Input follows output
Option C:	Output follows input
Option D:	Output follows output
19.	Comparators are used in
Option A:	Memory
Option B:	CPU
Option C:	Motherboard
Option D:	Hard drive
20.	A magnitude comparator is defined as a digital comparator which has
Option A:	Only one output terminal
Option B:	Two output terminals
Option C:	Three output terminals
Option D:	No output terminal

Q2.	Answer the following :
A	Solve any Two
i.	State and prove Demorgan's theorem.
ii.	Compare PAL with PLA.
iii.	Perform the following operation using 2's complement. i) \quad(14) BASE (10) $-(24)$ BASE (10) ii) $\quad(24) B A S E ~(10)-(14) B A S E ~(10) ~$
B	Solve any One
i.	Minimize the following expression using Quine MC-cluskey technique. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum$ M (0,1,2,3,5,7,9,11)
ii.	Prove that NAND and NOR gates are universal gates.

Q3.	Answer the following:
A	Solve any Two
i.	Write the VHDL code for a full subtractor.
ii.	Convert SR Flip flop to JK Flip flop.
iii.	Design 3 bit full adder circuit and explain in detail.
B	Solve any One
i.	What are shift registers? How are they classified? Explain working of any type of shift register.
ii.	Draw and explain a neat circuit diagram of BCD adder .

University of Mumbai

Examination June 2021
Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to $26^{\text {th }}$ June 2021
Program: Bachelor of Engineering
Curriculum Scheme: Electronics \& Telecommunication (Rev2019 'C'Scheme)
Examination: DSE Semester III
Course Code: ECC303 and Course Name: Digital System Design
Time: 2 hour
Max. Marks: 80

Question Number	Correct Option Enter either ' \mathbf{A}^{\prime} or ' \mathbf{B} ' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	C
Q2.	A
Q3.	A
Q4.	D
Q5.	C
Q6.	D
Q7.	A
Q8.	D
Q9.	C
Q10.	A
Q11.	A
Q12.	B
Q13.	D
Q14.	C
Q15.	D
Q16.	D
Q17.	C
Q18.	B
Q19.	C
Q20.	

