University of Mumbai

Examination June 2021
Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to $\mathbf{2 6}^{\text {th }}$ June 2021 Program: Bachelor of Engineering
Curriculum Scheme: Electronics \& Telecommunication (Rev2019 'C'Scheme)
Examination: DSE Semester III
Course Code: ECC302 and Course Name: Electronic Devices \& Circuits
Time: 2 hour

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	In AC load line, slope is generally	
Option A:	Greater than slope of DC load line	
Option B:	Less than slope of DC load line	
Option C:	Same as that of DC load line	
Option D:	Greater than as well as less than slope of DC load line	
2.	In AC load line ,the slope is represented by an equation is	
Option A:	$\mathrm{Y}=-1 /$ Rac	
Option B:	$\mathrm{Y}=1 /$ Rac	
Option C:	$\mathrm{Y}=-1 /$ RL	
Option D:	$\mathrm{Y}=1 /$ RL	
3.	A transistor with $\beta=120$ is biased to operate at a dc collector current of 1.2 mA.	
Find the value of r π.		
Option A:	$2.2 \mathrm{~K} \Omega$	
Option B:	$2.35 \mathrm{~K} \Omega$	
Option C:	$2.5 \mathrm{~K} \Omega$	
Option D:	$2.45 \mathrm{~K} \Omega$	
4.	The SI units of transconductance is	
Option A:	Volt/ Ampere	
Option B:	Ohm	
Option C:	Siemens	
Option D:	Ampere/ Volt	
5.	The enhancement MOSFET is	
Option A:	Normally open MOSFET	
Option B:	Useful as a very good constant voltage source	
Option C:	Widely used because of easy in its fabrication	
Option D:	Normally close MOSFET	
6.	A CS amplifier has a voltage gain of	
Option A:	$\mathrm{g}_{\mathrm{m}}\left(\mathrm{r}_{\mathrm{d}} \\| \mathrm{R}_{\mathrm{D}}\right)$	
Option B:	$\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{d}}$	

Option C:	gm Rs
Option D:	gm rs / ($1+\mathrm{gm} \mathrm{rs}$)
7.	For which of the following frequency region(s) can the coupling and bypass capacitors no longer be replaced by the short-circuit approximation?
Option A:	Low-frequency
Option B:	Mid-frequency
Option C:	High-frequency
Option D:	All frequency
8.	What is the normalized gain expressed in dB for the cut-off frequencies?
Option A:	$-3 \mathrm{~dB}$
Option B:	$+3 \mathrm{~dB}$
Option C:	$-6 \mathrm{~dB}$
Option D:	$-20 \mathrm{~dB}$
9.	The larger capacitive elements of the design will determine the frequency.
Option A:	Lower cut off
Option B:	Middle
Option C:	Higher cut off
Option D:	Intermediate
10.	What is the ratio of the capacitive reactance XCS to the input resistance Ri of the input RC circuit of a single-stage BJT amplifier at the low-frequency cut-off?
Option A:	0.25
Option B:	0.50
Option C:	0.75
Option D:	1.0
11.	Which of the lower cutoff -frequency determined by Cin, Cout, and CE will be the predominant factor in determining the low-frequency response for the complete system?
Option A:	Lowest
Option B:	Middle
Option C:	Highest
Option D:	Average
12.	Which of the following elements is (are) important in determining the gain of the system in the high-frequency region?
Option A:	Coupling capacitances
Option B:	Bypass capacitances
Option C:	Transconductance
Option D:	Inter-electrode, wiring and miller effect capacitances
13.	In a multistage amplifier, the overall frequency response is determined by the
Option A:	Frequency response of each stage depending on the relationships of the critical frequencies.
Option B:	Frequency response of the first amplifier.

Option C:	Frequency response of the last amplifier.
Option D:	Lower critical frequency of the first amplifier and the upper critical frequency of the final amplifier.
14.	In the mid frequency region, coupling capacitor acts as a ___ circuits and stray capacitance acts as a circuits.
Option A:	Open, Short
Option B:	Short, Open
Option C:	Short, Short
Option D:	Open, Open
15.	Differential Amplifier amplifies
Option A:	Input signal with higher voltage
Option B:	Input voltage with smaller voltage
Option C:	Sum of the input voltage
Option D:	Difference between the input voltage
16.	If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured as
Option A:	Dual Input Balanced Output
Option B:	Dual Input Unbalanced Output
Option C:	Single Input Balanced Output
Option D:	Single Input Unbalanced Output
17.	To increase the value of CMRR, which circuit is used to replace the emitter resistance R_{E} in differential amplifiers?
Option A:	Constant current bias
Option B:	Resistor in parallel with R_{F}
Option C:	Resistor in series with R_{E}
Option D:	Diode in parallel with R_{E}
18.	The input stage of an op amp is usually a
Option A:	Swamped amplifier
Option B:	Class B push-pull amplifier
Option C:	CE amplifier
Option D:	Differential amplifier
19.	Class power amplifier has highest collector efficiency
Option A:	A
Option B:	B
Option C:	C
Option D:	AB
20.	The maximum efficiency of transformer coupled class A power amplifier is
Option A:	78.5 \%
Option B:	50\%
Option C:	30\%
Option D:	25\%

Q2	Solve any Two Questions out of Three	
A	Explain the concept of multistage amplifier with advantage, disadvantage and application. For the circuit shown in Fig. 1, Transistor parameters are $\mathrm{Kn}=1 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{Vtn}=2 \mathrm{pF}, \mathrm{Cgd}=0.2 \mathrm{pF}, \lambda=0$, find the mid band voltage gain, miller capacitance and upper cut-off frequency. B	
C	Draw a small signal equivalent structure of Diff-amp and derive the equation for its CMRR.	

Q3.	Solve any Two Questions out of Three $\quad \mathbf{1 0}$ marks each
A	Derive the equation of Av, Zi and Zo of CE amplifier using un-bypass R_{E}.
B	Explain the effects of coupling, bypass capacitor and parasitic capacitor on frequency response of single stage amplifier.
C	Draw a neat diagram of a transformer coupled Class A power amplifier and explain its working, hence find its efficiency.

University of Mumbai

Examination June 2021
Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to $26^{\text {th }}$ June 2021
Program: Bachelor of Engineering
Curriculum Scheme: Electronics \& Telecommunication (Rev2019 'C'Scheme)
Examination: DSE Semester III
Course Code: ECC302 and Course Name: Electronic Devices \& Circuits
Time: 2 hour

Question Number	Correct Option (Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	A
Q2.	A
Q3.	C
Q4.	D
Q5.	A
Q6.	A
Q7.	A
Q8.	A
Q9.	A
Q10.	C
Q11.	D
Q12.	A
Q13.	B
Q14.	D
Q15.	A
Q16.	A
Q17.	D
Q18.	C
Q19.	B
Q20.	

