University of Mumbai

Examination June 2021
Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to $\mathbf{2 6}^{\text {th }}$ June 2021
Program: Bachelor of Engineering
Curriculum Scheme: Electronics \& Telecommunication (Rev2019 'C'Scheme)
Examination: DSE Semester III
Course Code: ECC304 and Course Name: Network Theory

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	Norton's theorem states that a complex network connected to a load can be replaced with an equivalent impedance
Option A:	in series with a current source
Option B:	in parallel with a voltage source
Option C:	in series with a voltage source
Option D:	in parallel with a current source
2.	Find current I ?
Option A:	1 A
Option B:	2 A
Option C:	4 A
Option D:	8 A
3.	Determine V_{th} in the following figure.
Option A:	4.2
Option B:	3.8
Option C:	6.6
Option D:	2.8

4.	Which one of the following is a cut set of the graph in the given figure?
Option A:	1, 2, 3, and 4
Option B:	2, 3, 4, and 6
Option C:	1, 4, 5, and 6
Option D:	$1,3,4$, and 5
5.	If 10 V independent voltage source is connected in series with 100 ohm and R_{L} load. Maximum power that can be transferred to the load is ---
Option A:	5 W
Option B:	10 W
Option C:	0.25 W
Option D:	2.5 W
6.	If a graph consists of 5 nodes and 7 branches, then the number of twigs and number of links are \qquad and \qquad respectively.
Option A:	3, 4
Option B:	5,2
Option C:	2,5
Option D:	4, 3
7.	Reduced Incidence matrix can be obtained by -----
Option A:	Eliminating a row of complete incidence matrix
Option B:	Multiplying complete incidence matrix with its transpose
Option C:	$\left\|\mathrm{AA}^{\mathrm{T}}\right\|$
Option D:	Obtaining tree
8.	In the following figure, a switch was opened for a long time and then closed at $\mathrm{t}=$ 0 . Determine $\mathrm{i}(\mathrm{t})$ at $\mathrm{t}=0^{+}$.
Option A:	1 A
Option B:	0.3 A
Option C:	0.7 A
Option D:	0 A
9.	For an RC driving point impedance function, the poles, and zeros
Option A:	should alternate on real axis
Option B:	should alternate only on negative real axis

Option C:	should alternate on imaginary axis
Option D:	should alternate only on negative imaginary axis
10.	In figure, switch is at position A for long time, what is current at $t=0^{-}$?
Option A:	20 A
Option B:	3 A
Option C:	1.81 A
Option D:	2 A
11.	Determine location of poles of following transfer function $F(S)=\frac{s^{2}+1}{s^{2}+4}$
Option A:	0, 2 j
Option B:	1j, -1j
Option C:	-3, -4
Option D:	$2 \mathrm{j},-2 \mathrm{j}$
12.	For transfer function $(s)=\frac{S+1}{S+7}$ Which of the following is the correct statement?
Option A:	All the poles are at the right half of the S plane.
Option B:	There is a pole at $\mathrm{s}=-7$
Option C:	System has three zeros.
Option D:	There is zero at right half of the S plane
13.	Find out Z_{11} ?
Option A:	5/3 Ohm
Option B:	3/2 Ohm
Option C:	2 Ohm
Option D:	2/3 Ohm
14.	Two port networks are connected in cascade. The combination is to be represented as a single two-port network. The parameters obtained by multiplying individual are ----

Option A:	Z-parameter matrix
Option B:	Y-parameter matrix
Option C:	h-parameter matrix
Option D:	ABCD-parameter matrix
15.	One of the conditions for two port network to be reciprocal is ------
Option A:	$\mathrm{Z}_{11}=\mathrm{Z}_{22}$
Option B:	$\mathrm{h}_{21}=-\mathrm{h}_{12}$
Option C:	$\mathrm{A}=\mathrm{D}$
Option D:	$\mathrm{Y}_{11}=\mathrm{Y}_{22}$
16.	Which of the following is the correct generalized KVL equation in graph theory?
Option A:	B. $Z_{\text {b }} \cdot \mathrm{I}^{\prime}=$ B. $Z_{b} \mathrm{I}_{\text {S }}$
Option B:	$Z_{b} \cdot B \cdot B^{T} I_{1}=B\left(Z_{b} I_{s}-V_{S}\right)$
Option C:	
Option D:	Y. $\mathrm{V}_{\mathrm{t}}=\mathrm{Q} \mathrm{I}_{\mathrm{S}}-\mathrm{Q} \mathrm{Y}_{\mathrm{b}} \mathrm{Vs}$
17.	A Two port network has the following equations. $\mathrm{I} 2=10 \mathrm{I}_{1}+2 \mathrm{~V}_{2}$ and $\mathrm{V}_{1}=5 \mathrm{I}_{1}+6 \mathrm{~V}_{2}$ and Hybrid parameters are $\mathrm{h}_{\Perp}=$ \qquad and $h_{12}=-------$ respectively.
Option A:	6 and 5
Option B:	10 and 2
Option C:	5 and 6
Option D:	2 and 10
18.	If tree consists of 4 twigs and 3 links, the number of rows in fundamental cutset matrix are
Option A:	5
Option B:	4
Option C:	3
Option D:	7
19.	For a series connected R-C network where $\mathrm{R}=100$ ohm and $\mathrm{C}=0.1 \mathrm{uF}$ connected in series. Time constant (τ) of a given circuit is ---------
Option A:	10 uSec
Option B:	$1 / 100 \mathrm{Sec}$
Option C:	100 uSec
Option D:	1 uSec
20.	If a dependent current source has value $8 \mathrm{~V}_{1}$, where V_{1} is voltage across a node in the same circuit, the dependent source represents
Option A:	Current controlled voltage source
Option B:	Voltage controlled current source
Option C:	Voltage controlled voltage source
Option D:	Current controlled current source

Q2	Solve any Two Questions out of Three
A	Find the current I in 8Ω resistor by using superposition theorem.

University of Mumbai

Examination June 2021
Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to $26^{\text {th }}$ June 2021
Program: Bachelor of Engineering
Curriculum Scheme: Electronics \& Telecommunication (Rev2019 'C'Scheme)
Examination: DSE Semester III
Course Code: ECC304 and Course Name: Network Theory
Time: 2 hour Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or ' \mathbf{B} or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	D
Q2.	A
Q3.	C
Q4.	D
Q5.	C
Q6.	D
Q7.	A
Q8.	D
Q9.	A
Q10.	D
Q11.	B
Q12.	A
Q13.	D
Q14.	B
Q15.	C
Q16.	C
Q17.	B
Q18.	A
Q19.	B
Q20.	

