K. J. Somaiya Institute of Engineering and Information Technology Sion, Mumbai - 400022
NAAC Accredited Institute with 'A' Grade
NBA Accredited 3 Programs (Computer Engineering, Electronics \& Telecommunication Engineering and Electronics Engineering) Permanently Affiliated to University of Mumbai

EXAMINATION TIME TABLE (JUNE 2021)

PROGRAMME - S.E. (Computer) (REV. -2016) (Choice Based) SEMESTER - IV

Days and Dates	Time	Paper Code	Paper
Tuesday, June 1, 2021	11:30 a.m. to 1:30 p.m.	CSC401	APPLIED MATHEMATICS - IV
Thursday, June 3, 2021	11:30 a.m. to 1:30 p.m.	CSC402	ANALYSIS OF ALGORITHMS
Saturday, June 5, 2021	11:30 a.m. to 1:30 p.m.	CSC403	COMPUTER ORGANIZATION AND ARCHIECTURE
Tuesday, June 8, 2021	11:30 a.m. to 1:30 p.m.	CSC404	COMPUTER GRAPHICS
Thursday, June 10, 2021	11:30 a.m. to 1:30 p.m.	CSC405	OPERATING SYSTEM

Important Note: • Change if any, in the time table shall be communicated on the college web site.

Mumbai
12th May, 2021
Principal

University of Mumbai

Examination 2021 under cluster \qquad (Lead College: \qquad)
Examinations Commencing from 1 ${ }^{\text {st }}$ June 2021 to 10 ${ }^{\text {th }}$ June 2021
Program: BE (COMPUTER ENGINEERING)
Curriculum Scheme: 2016
Examination: SE Semester IV
Course Code: CSC401 and Course Name: Applied Mathematics IV
Time: 2hour
Max. Marks: 80

5.	The dual of the following LPP is $\operatorname{Max} z=5 x_{1}+2 x_{2}$ Subject to: $3 x_{1}+2 x_{2} \leq 17$, $2 x_{1}+2 x_{2} \leq 7$ $x_{1}+2 x_{2} \leq 19$
Option A:	$\begin{gathered} \operatorname{Min} z=17 y_{1}+7 y_{2}+19 y_{2} \\ \text { Subject to : } 3 y_{1}+2 y_{2}+y_{3} \leq 5, \\ 2 y_{1}+2 y_{2}+2 y_{3} \leq 19 \\ y_{1}, y_{2}, y_{3} \geq 0 \\ \hline \end{gathered}$
Option B:	$\begin{aligned} & \operatorname{Min} z=17 y_{1}+7 y_{2}+19 y_{2} \\ & \text { Subject to }: 3 y_{1}+2 y_{2}+y_{3} \geq 5, \\ & 2 y_{1}+2 y_{2}+2 y_{3} \leq 19 \\ & y_{1}, y_{2}, y_{3} \geq 0 \end{aligned}$
Option C:	$\begin{aligned} & \operatorname{Min} z=5 y_{1}+2 y_{2}+19 y_{2} \\ & \text { Subject to : } 3 y_{1}+2 y_{2}+y_{3} \geq 17 \\ & 2 y_{1}+2 y_{2}+2 y_{3} \geq 7 \\ & y_{1}, y_{2}, y_{3} \geq 0 \\ & \hline \end{aligned}$
Option D:	$\begin{gathered} \operatorname{Min} z=17 y_{1}+7 y_{2}+19 y_{2} \\ \text { Subject to }: 3 y_{1}+2 y_{2}+y_{3} \geq 5, \\ 2 y_{1}+2 y_{2}+2 y_{3} \geq 2 \\ y_{1}, y_{2}, y_{3} \geq 0 \\ \hline \end{gathered}$
6.	If $A=\left[\begin{array}{ccc}7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4\end{array}\right]$, then the minimal polynomial of a matrix A is
Option A:	$x^{2}-5 x+36$
Option B:	$x^{2}-4$
Option C:	$x^{2}-15 x+36$
Option D:	$x^{3}-7 x^{2}+16 x-12$
7.	Suppose we know that births in a hospital occur randomly at an average rate of 1.8 births per hour. What is the probability that we observe 5 births in a given 2-hour interval
Option A:	0.3681
Option B:	0.1377
Option C:	0.031
Option D:	0.0253
8.	Evaluate $\int_{C} \frac{e^{2 \pi z}}{z+i} d z$, where c is a circle $\|z+i\|=1$
Option A:	$-2 \pi i / e$
Option B:	$2 \pi i$
Option C:	$-2 \pi i e^{3}$
Option D:	$-2 \pi i e^{-3}$
9.	The optimal solution of the LPP, $\operatorname{Max} . Z=2 x_{1}+5 x_{2}$ subject to $x_{1}+3 x_{2} \leq 3$ $3 x_{1}+2 x_{2} \leq 6, x_{1}, x_{2} \geq 0$ is
Option A:	$x_{1}=0, x_{2}=-2, Z=-10$
Option B:	$x_{1}=2, x_{2}=0, Z=-4$
Option C:	$x_{1}=2, x_{2}=0, Z=4$

Option D:	$x_{1}=2, x_{2}=0, Z=2$							
10.	If $A=\left[\begin{array}{cc}-2 & 0 \\ 0 & -3\end{array}\right]$, the the matrix e^{A} is							
Option A:	$\left[\begin{array}{cc}3^{-A} & 0 \\ 0 & 2^{-A}\end{array}\right]$							
Option B:	$\left[\begin{array}{cc}2^{A} & 0 \\ 0 & 3^{A}\end{array}\right]$							
Option C:	$\left[\begin{array}{cc}e^{-2} & 0 \\ 0 & e^{-3}\end{array}\right]$							
Option D:	$\left[\begin{array}{cc} e^{3} & 0 \\ 0 & e^{2} \end{array}\right]$							
11.	In a LPP the constants $c_{1}, c_{2}, \ldots . c_{n}$ in the objective function of the primal appear in\qquad of the dual							
Option A:	Objective function							
Option B:	RHS of constraints							
Option C:	Coefficients of the variables in constraints							
Option D:	Slack variables							
12.	If a continuous random variable X has a probability density function $f(x)=\frac{x}{2}, 0<x<2$, then find the probability that x is greater than 1							
Option A:	1/3							
Option B:	1/2							
Option C:	1/4							
Option D:	3/4							
13.	If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$, then the matrix $A^{2}-2 A-3 I$ is							
Option A:	a Null matrix							
Option B:	The matrix A itself							
Option C:	$\left[\begin{array}{cc}-2 & -1 \\ 0 & -1\end{array}\right]$							
Option D:	$\left[\begin{array}{ll}-2 & -2 \\ -1 & -1\end{array}\right]$							
14.	The Eigen values of the Matrix $A=\left[\begin{array}{ccc}2 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ are							
Option A:	1,1,9							
Option B:	0, 1, -1							
Option C:	1,9,2							
Option D:	1,2,-1							
15.	The number of the accidents in a city during a week is given as follows. Find the χ^{2} calculated value and test the hypothesis that accidents are distributed evenly over the week. [given $\chi^{2}=12.59$ at 6 degrees of freedom and 5\% LOS]							
	Day	1	2	3	4	5	6	7
	No. of accidents	10	11	9	8	12	9	11

Option A:	$\chi^{2}=2.2$, Hypothesis rejected
Option B:	$\chi^{2}=1.2$, Hypothesis rejected
Option C:	$\chi^{2}=1.2$, Hypothesis accepted
Option D:	$\chi^{2}=2.2$, Hypothesis accepted
16.	The oil paint is marketed in the tin of 12 kgs . If sample of 40 tins showed the mean weight as 11.8 kg with standard deviation 2 kgs . Find the calculated absolute value of test statistic z.
Option A:	0.8975
Option B:	0.6325
Option C:	0.8124
Option D:	0.7895
17.	The residue of $f(z)=\frac{e^{2 z}}{z^{3}}$ at its pole
Option A:	4
Option B:	2
Option C:	0
Option D:	-2/3
18.	If $f(z)=\frac{1}{z-2}-\frac{1}{z-1}$, then the Taylor's seriesof $f(z)$ in the region of convergence $\|z\|<1$ is
Option A:	$-\frac{1}{2}\left[1-\frac{z}{2}+\frac{z^{2}}{4}-\frac{z^{3}}{8}+\cdots\right]+\left[1+z+z^{2}+z^{3}+\cdots\right]$
Option B:	$-\frac{1}{2}\left[1+\frac{z}{2}+\frac{z^{2}}{4}+\frac{z^{3}}{8}+\cdots\right]+\left[1-z+z^{2}-z^{3}+\cdots\right]$
Option C:	$-\frac{1}{z}\left[1+\frac{z}{2!}+\frac{z^{2}}{4!}+\frac{z^{3}}{8!}+\cdots\right]+\left[1+z+z^{2}+z^{3}+\cdots\right]$
Option D:	$-\frac{1}{2}\left[1+\frac{z}{2}+\frac{z^{2}}{4}+\frac{z^{3}}{8}+\cdots\right]+\left[1+z+z^{2}+z^{3}+\cdots\right]$
19.	For Diagonalizable matrix $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 5 \\ 0 & 4 & 3\end{array}\right]$,
Option A:	Algebraic Multiplicity \neq Geometric Multiplicity
Option B:	Algebraic Multiplicity = Geometric Multiplicity = 1
Option C:	Algebraic Multiplicity = 2, Geometric Multiplicity = 1
Option D:	Algebraic Multiplicity = Geometric Multiplicity = 2
20.	The value of the $\int_{-\infty}^{\infty} \frac{1}{x^{2}+4} d x$ using contour integration is
Option A:	$\frac{\pi}{2}$
Option B:	π
Option C:	$\frac{1}{2 i}$
Option D:	$2 \pi i$

Q2	Solve any Four out of Six
A	Evaluate $\int_{c} \frac{e^{2 z}}{(z-1)^{3}} d z, \quad c:\|z+i\|=2$ using Cauchy'sResidue theorem
B	Find the Eigen values and Eigen vectors of $A=\left[\begin{array}{ccc\|}\hline-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
C	Find the probability that at most 2 defective fuses will be found in a box of 200 fuses. If experience shows that 2\% of such fuses are defective?
	A Principal at certain school claims that the students in his school are above average intelligence. A random sample of 30 students IQ scores have a mean score of 112.5. Is there sufficient evidence to support the principal's claim? The mean population IQ is 100 with standard deviation of 15.
E	The manufacturer of a certain make of LED bulb claims that his bulbs have a mean life of 20 months. A random sample of 7 such bulbs gave the following values. Life of bulbs in months: 19, 21, 25, 16, 17, 14, 21. Can you regard the producer's claim to be valid at 1% level of significance?
F	Solve the LPP by simplex method, $M a x Z=4 x_{1}+10 x_{2}$

Q3	Solve any Four out of Six		5 marks each	
A	Obtain Taylor's and Laurent's expansions of $f(z)=\frac{z-1}{z^{2}-2 z-3}$ about $z=2$ in the region of convergence $\|z-2\|<1$			
B	If $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$, Obtain the minimal polynomial and Eigen values of $3 A^{-1}$			
C	If the probability that an individual suffers a bad reaction from particular infection is 0.001, determine the probability that out of 2000 individuals i) exactly three ii) more than two individuals will suffer a bad reaction.			
D	In the Normal distribution exactly 30% of items are below 45 and 8% of the items are above 64 . Find the mean and variance of normal distribution.			
E	The following table gives the data of boys and their fathers. Do these figures support hypothesis that educated fathers have intelligent boys?			
		Intelligent sons	Unintelligent sons	Total
	Educated Fathers	50	45	95
	Uneducated fathers	45	90	135
	Total	95	135	230

$$
\begin{array}{l|l}
\mathrm{F} & \text { Optimize } x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-6 x_{1}-8 x_{2}-10 x_{3}
\end{array}
$$

University of Mumbai

Examination 2021 under cluster _ (Lead College: \qquad)
Examinations Commencing from 1 ${ }^{\text {st }}$ June 2021 to $10^{\text {th }}$ June 2021
Program: BE (COMPUTER ENGINEERING)
Curriculum Scheme: 2016
Examination: SE Semester IV
Course Code: CSC401 and Course Name: Applied Mathematics IV

Question Number	Correct Option (Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} '')
Q1.	D
Q2.	A
Q3.	A
Q4	C
Q5	D
Q6	C
Q7	B
Q8.	B
Q9.	C
Q10.	B
Q11.	D
Q12.	A
Q13.	D
Q14.	C
Q15.	B
Q16.	B
Q17.	D
Q18.	B
Q19.	A
Q20.	

University of Mumbai
 Examination June 2021

 Examinations Commencing from $1^{\text {st }}$ June 2021

 Examinations Commencing from $1^{\text {st }}$ June 2021
 Program: Computer Engineering
 Curriculum Scheme: Rev 2016
 Examination: SE Semester IV
 Course Code: CSC402 and Course Name: Analysis of Algorithm

Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	For $\mathrm{f}(\mathrm{n})=2 \mathrm{n}^{2}+5$ and $\mathrm{g}(\mathrm{n})=7 \mathrm{n}$ what is the value of n where $\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n})$)
Option A:	1
Option B:	2
Option C:	3
Option D:	4
2.	For given elements $70,30,20,50,60,10,40$, if sort them using selection sort then what will be the output after iteration (pass) 3
Option A:	70, 30, 20, 50, 10, 60, 40
Option B:	70, 30, 20, 50, 60, 10, 40
Option C:	10, 20, 30, 50, 60, 70, 40
Option D:	10, 30, 20, 50, 60, 70, 40
3.	In the problem of finding minimum and maximum using straightforward algorithm, it take run time
Option A:	$\mathrm{O}\left(\mathrm{n}^{2}\right)$
Option B:	Ω (n)
Option C:	O(n)
Option D:	$\theta(\mathrm{n})$
4.	What is time complexity for following list using Quick sort algorithm If pivot is the last element. $\begin{array}{lllllll} 7 & 6 & 10 & 12 & 8 & 3 & 1 \\ \hline \end{array}$
Option A:	$\mathrm{O}(\mathrm{n})$
Option B:	$\mathrm{O}(\log \mathrm{n})$
Option C:	O(nlogn)
Option D:	$\mathrm{O}\left(\mathrm{n}^{2}\right)$
5.	What is the time complexity if binary search algorithm used for finding element from a set of n elements.
Option A:	$\mathrm{O}(\mathrm{n})$
Option B:	O (nlogn)

Option C:	$\mathrm{O}(\log \mathrm{n})$
Option D:	$\mathrm{O}\left(\mathrm{n}^{2}\right)$
6.	In fractional Knapsack Problem, suppose $\mathrm{n}=3$, profit $=(25,24,15)$, Weight (in $\mathrm{kg})=(18,15,10)$ and capacity $=20$, then optimal solution having total profit is
Option A:	28.2
Option B:	31
Option C:	31.5
Option D:	32.2
7.	What is the cost of following graph using Kruskal's algorithm
Option A:	37
Option B:	38
Option C:	36
Option D:	39
8.	For a problem, it is strategy that builds a sequence of choices for getting the optimal solution.
Option A:	Backtracking and Branch-and-bound
Option B:	Divide and Conquer
Option C:	Greedy technique
Option D:	Dynamic Programming
9.	In assembly line scheduling problem to go in stations at stage 5 what are the probable ways
Option A:	16
Option B:	25
Option C:	32
Option D:	5
10.	In multistage graphs with source S and sink T, which vertex is backward vertex

	while finding the distance from each vertex $\mathrm{A}, \mathrm{B}, \mathrm{C}$ to vertex T .
Option A:	B
Option B:	C
Option C:	D
Option D:	E
11.	In following graph for the TSP, if the intermediate set $\mathrm{S}=\phi$, then using dynamic programming the $\operatorname{Cost}(\mathrm{B}, \phi, \mathrm{E})$ is \qquad
Option A:	2
Option B:	3
Option C:	7
Option D:	9
12.	Identify spurious hit in the given text string for pattern of length- 5 window Pattern: 31415 Modulus: 10 Text: 125978631415794321583141568
Option A:	8-21
Option B:	13-17
Option C:	3-7
Option D:	7-20
13.	Apply naive string matching algorithm to find the shift count where pattern matches with the Text= abcdabcdyabcdadbadf and pattern= abcdad
Option A:	8
Option B:	9

Option C:	10
Option D:	11
14.	In 15 puzzle problem a node currently being expanded is called
Option A:	Live node
Option B:	E node
Option C:	Dead node
Option D:	Root node
15.	Which of the following statement about $0 / 1$ knapsack and fractional knapsack problem is correct?
Option A:	In 0/1 knapsack problem items are divisible and in fractional knapsack items are indivisible
Option B:	0/1 knapsack and fractional knapsack both are the same
Option C:	$0 / 1$ knapsack is solved using a greedy algorithm and fractional knapsack is solved using dynamic programming
Option D:	In 0/1 knapsack problem items are indivisible and in fractional knapsack items are divisible
16.	Backtracking algorithm is implemented by constructing a tree of choices called as?
Option A:	State-space tree
Option B:	State-chart tree
Option C:	Backtracking tree
Option D:	Node tree
17.	Of the following given options, which one of the following is a correct option that provides an optimal solution for 4 -queens problem?
Option A:	(4,3,2,1)
Option B:	(2,3,1,4)
Option C:	(3,1,4,2)
Option D:	(4,2,3,1)
18.	\qquad is the class of decision problems that can be solved by nondeterministic polynomial algorithms?
Option A:	P
Option B:	NP
Option C:	Complete
Option D:	Hard
19.	To which of the following class does a CNF-satisfiability problem belong?
Option A:	NP class
Option B:	P class
Option C:	NP hard

Option D:	NP complete
20.	What is vertex coloring of a graph?
Option A:	A condition where all vertices should have same color
Option B:	A condition where any two vertices having a common edge should always have same color
Option C:	A condition where any two vertices having a common edge should not have same color
Option D:	A condition where all vertices should have a different color

Q2	Solve any Four out of Six
A	Define O, Ω, θ notations and find complexity of following recurrence relations i) $\quad \mathrm{T}(\mathrm{n})=4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}^{2}$$\quad$ ii) $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}^{3}$

Q3.	\quad 5 marks each
A	Solve any Two
i.	Find an optimal solution to the knapsack instance $\mathrm{n}=7, \mathrm{~W}=15$,
ii.	Describe 8 queen problem using backtracking method and write minimum 2 different ways of keeping the 8 queen where no two queens can attack other.
iii.	Using Rabin karp string matching algorithm, find the all position where the string

	matches with given pattern. Text $=$ " $569821987632198 "$ Pattern $=" 2198 "$ and $\mathrm{q}=10$
B	Solve any One
i.	Apply all pair shortest path Floyd-Warshall algorithm to following graph and find the all pair shortest path and draw the final graph.
ii.	Determine the LCS of $\mathrm{X}=<101000111010>$

University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev 2016
Examination: SE Semester IV
Course Code: CSC402 and Course Name: Analysis of Algorithm
Time: 2 hour
Max. Marks: 80

Q1 Question	Correct Option (Enter either 'A' or 'B' or 'C' or ' D^{\prime} '
Q1.	C
Q2.	C
Q3.	D
Q4	D
Q5	B
Q6	C
Q7	A
Q8.	C
Q9.	C
Q10.	D
Q11.	B
Q12.	D
Q13.	B
Q14.	B
Q15.	D

Q16.	A
Q17.	C
Q18.	B
Q19.	D
Q20.	C

Q2	Solve any Four out of Six 5 marks each
A	Define O, Ω, θ notations and find complexity of following recurrence relations $\mathrm{T}(\mathrm{n})=4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}^{2}$ ii) $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}^{3}$ Ans:- Defining asymtotic notation $0, \Omega, 0$. Let $f(n) \& g(n)$ be 2 non-ve fun. \& \& const if $f(n) \leq$ c.gen Then $f(n) \& O(g e n)$) if $f(n) \geqslant$ c.gen) then $f(n) \in \approx \Omega(g(n))$ it $a<c_{1}, g(n) \leqslant f(n) \leqslant c_{2}, g(n)$ $c_{1}, c_{2}=$ const $\&>0$ Then $f(n) \in Q(g(n))$ Riven recusrence relns are (i) $T(n)=4 T(n / 2)+n^{2}$ (2) $T(n)=2 T\left(r_{3}\right)+n^{3}$ These can be solved by substitution/ Reaurarence tree/ Masters method. tree/ Mastors method. Here, it's solved by masters theorns. Comparing given recarrence reln with $T(n) \quad a(n / b)+f(n)$ Applying 20 masters theorm we get $F(n)=Q\left(n^{2} \lg n\right)$

	$\begin{aligned} & T(n)=2 T(n / 2)+n^{3} \\ & a=2 \quad b=2 \quad f(n)=n^{3} \\ & \log _{6} a=n^{\log _{2} 2=n^{1} \quad \& \quad f(n)=n^{3}} \\ & \text { comparing } \quad n^{\prime} \stackrel{n^{3}}{n} \quad n^{1} \& n^{3} \end{aligned}$ \therefore Applying $3^{\text {ro }}$ law i.e. $\begin{gathered} \text { Applying } f(n)=\Omega\left(n^{\left.\log _{6} a+\epsilon\right)}\right. \\ n^{3}=\Omega\left(n^{1+\epsilon}\right) \\ \therefore T(n)=Q(f(n))=Q\left(n^{3}\right) \\ T(n)=Q\left(n^{3}\right) \end{gathered}$ Find the aptimal soln to knapsack instance $n=7 \quad \omega=15$ $\begin{aligned} & \text { protit }=(10,5,15,7,6,18,3) \\ & \text { weight }=(2,3,5,7,1,4,1) \end{aligned}$
B	Find all possible subsets of weight that sum to m, let $n=6, m=30$ and $w[1: 6]=\{5,10,12,13,15,18\}$ and draw portion of state space tree.

	\rightarrow Using kruskals algo $\begin{aligned} & M=\frac{\text { step } 3}{T+2+3+3}=9 \quad \text { step } 4 \\ & M=1+2+3+3+4 \\ & M \cos t=1+2+3+3+1-13 \end{aligned}$ $\begin{aligned} & M=1+2+3+3=9 \quad M=1+2+3+3+4 \\ & M \cos \cos =1+2+3+3+4=1313 \end{aligned}$ By Prims algo (1) (2) (3) (3) (3)
D	Describe terms P, NP, NP complete and NP hard. Explain the NP completeness and reducibility There aze some computafional problems that cannd be solved by algo even with uneimited time. P - I's set of problems that can be solved by determinisis algo in Polyromital time. (bat small degree t.e. $0, n^{2}, n^{3} \rightarrow$ NP- It's set of decision problens that can be solved by Non-Deterministic algo in Polynomial time Pis

Q3.	
A	Solve any Two 5 marks each
i.	Find all possible subsets of weight that sum to m, let $n=6, m=30$ and $\mathrm{w}[1: 6]=\{5,10,12,13,15,18\}$ and draw portion of state space tree. \therefore Actaal capacity \Rightarrow an $=3 \quad W=15$ (1) Now chose iteur whase P / W ratio is high/imore \therefore cummulative protit: $C P=0$ DChose item no $5 \Rightarrow P / \omega=6$ $\begin{aligned} & \therefore \quad C P=0+6=6 \\ & \text { capacity remaining }=15-1=14 \end{aligned}$ (2) Now chase item $1 \quad P / \omega=10 / 2=5$ $\begin{aligned} & \therefore \quad C P=6+10=16 \\ & \text { capacity }=14-2=12 \end{aligned}$

	Consider the 8×8 chessboard on which we have to 8 queens so that no two queens attade edeb other by being in the same now/coln/diagonal. Now, we try to place 8 queens on the chessboard whi is initially empty. 7 Now we start placing gar on chers 60 ard. Thus, the 5 queens placed such that no 2 queens attack eaci Now, to place Q_{6} at location $(6,6), Q_{5}$ can attack, if Q_{6} is piaced at $(6,7)$ then Q_{1} attack, if Q_{6} placed at $(6,8)$ then $Q_{2} a^{t-1}$ similarly at $(6,5),(6,4),(6,3),(6,2),(6,1)$ it Q_{6} 甲laced then 95 $Q_{2}, Q_{4}, Q_{1}, Q_{3}$ attacks Q_{6} resp. This shows we need to gacktrac and change previous placed queens positions. It could be $Q_{7} \Rightarrow Q_{6} Q_{3} Q_{1} Q_{4} Q_{2} Q_{5} Q_{4}$ attacked Q4 by \therefore Hence wehave to backtrack to marinot alrederu olaced Queens But again Q_{8} can't $6 e$ placed at any empty loc Hence, need bo backtraok. Final successtul pla ment of 8 Queens are shown as \rightarrow
iii.	Using Rabin karp string matching algorithm, find the all position where the string matches with given pattern. $\text { Text }=" 569821987632198 " \text { Pattern }=" 2198 " \text { and } \mathrm{q}=10$

		$\begin{aligned} & \text { String }={ }^{11} 569 \& 21987632798 \quad n=15 \\ & \text { Pattern }=2198 \\ & q=10 \text { (hash) Rey }=P \bmod q=4198 \% 10=8 \\ & \text { (un) } q=210 \end{aligned}$ Now, Calculating the hash value for each 4 derit subetring $5698 \% 10=8$ Here the hash values of substring \& pattern are same i.e. 8. Now matching the each chad of sabstring \& pattern i.e. 5698 \& 2198 resp.which are. difterent \therefore This is spurious Hit. which are. different \therefore This is spurious Hit How, finding hash values for Denf sulastoingsHash value ol stbibsting Hash value of matehing Hash value of stibstring Hash value of mataing$6982 \% 10=2$$6982 \% 10=2$$9821 \% 10=1$$8219 \% 90=9$$2198 \% 10=8$8 No 8 NO 8 No 8 Yes Calleat. Actual Hitis) char of substring Nent \therefore substoing matches with pattern at index 4$\begin{aligned} & 1987 \% 10=7 \\ & 9876 \% 10=6 \\ & 8768 \% 10=3 \\ & 7632 \% 10=2 \\ & 6321 \% 10=1 \\ & 3219 \% 10=9 \\ & 2198 \% .10=8 \end{aligned}$8 No 8 Nes \therefore matching all char of pattern \& substring at index $=11$
B	Solve	any One 10 marks
i.	Apply the al	all pair shortest path Floyd-Warshall algorithm to following graph and find 1 pair shortest path and draw the final graph.

		The matrix $D^{m}{ }^{m} \overline{d_{j}}$ dij gives final answer. $^{(n)}$ gil $\left.d_{i j}^{i j}=d_{i j}\right)$ for all $i, j \in V$ \therefore. Fur Given Graph, usinger all pair shortest path alge \Leftrightarrow The distance matrices 0 . \& the predecersor matriner IIs $\left.\begin{array}{r} \text { are as } \\ i \end{array}=\begin{array}{l} 1 \\ 3 \\ 4 \end{array}\right]\left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ \infty & 5 & 9 & \infty \\ \infty & 0 & 1 & \infty \\ \infty & \infty & 0 & 2 \\ \infty & 3 & \infty & 0 \end{array}\right]$ $\left.\vec{T}^{\circ}=1 \begin{array}{c}1 \\ 1\end{array} \left\lvert\, \begin{array}{cccc}1 & 2 & 3 & 4 \\ \mathbf{N} & \mathbf{N} & 1 & N \\ 3 & N & N \\ 4 & N & N & 3 \\ N & 4 & N & N\end{array}\right.\right]$ Now, talcalating/finding the dustance moatrix $0^{\prime} \& \pi^{\prime}$ as \therefore The final All paiz grapb is
ii.		termine the LCS of $\mathrm{X}=<101000111010>$ and $\mathrm{Y}=<01001001010>$

Longest common subsequence for strings - $x \equiv 101000111010$

$$
\gamma=01001001.010
$$

Using formula.

University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination: SE Semester IV
Course Code: CSC403 and Course Name: Computer Organization and Architecture
Time: 2 hour

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	In restoring division algorithm, after performing operations left shift operation on A, Q and $\mathrm{A}=\mathrm{A}-\mathrm{M}$, if MSB of $\mathrm{A}=1$ then
Option A:	$\mathrm{Q} 0=1$
Option B:	$\mathrm{Q} 0=0, \mathrm{~A}=\mathrm{A}+\mathrm{M}$
Option C:	$\mathrm{A}=\mathrm{A}+\mathrm{M}$
Option D:	$A=A+Q$
2.	Exponent overflow is defined as
Option A:	a negative exponent exceeds the minimum possible exponent value
Option B:	a negative exponent exceeds the maximum possible exponent value
Option C:	a positive exponent exceeds the maximum possible exponent value
Option D:	a positive exponent exceeds the minimum possible exponent value
3.	Two's complement representation of +18 and -18 using 16 bits are
Option A:	0000000000011010, 1111111111101010
Option B:	0000000000010011, 1111111111111110
Option C:	0000000000010110, 1111111111101111
Option D:	0000000000010010, 1111111111101110
4.	Arithmetic and logic unit does not consist of
Option A:	Status flag
Option B:	Complementer

Option C:	Shifter	
Option D:	Control Unit	
5.	To minimize main memory references, the machine or assembly language programmer optimize the use of	
Option A:	Control registers	
Option B:	User visible registers	
Option C:	Status registers	
Option D:	Instruction register	
6.	Identify the correct matching	
	Addressing Modes	Description
	1. Direct	a. The address field refers to the address of a word in register, which in turn contains a full-length address of the operand.
	2. Immediate	b. The address field refers to the address of a word in memory, which in turn contains a full-length address of the operand.
	3. Indirect	c. Used to define and use constants or set initial values of variables.
	4. Register Indirect	d. the address field contains the effective address of the operand
Option A:	1-d, 2-c, 3-b, 4-a	
Option B:	1-a, 2-b, 3-c, 4-d	
Option C:	1-b, 2-d, 3-a, 4-c	
Option D:	1-c, 2-a, 3-d, 4-b	
7.	\qquad contains a word to be stored in memory or sent to the I/O unit, or is used to receive a word from memory or from the I/O unit.	
Option A:	Instruction Register	
Option B:	Memory Address Register	
Option C:	Memory Buffer Register	
Option D:	Instruction Buffer Register	

8.	When an instruction is to be fetched following micro-operations may be performed
Option A:	t1: MAR <- (IR(Address)), t2: MBR <- Memory, t3: IR(Address) <- (MBR(Address))
Option B:	t1: MAR <- (PC), t2: MBR <- Memory, PC <- (PC) + 1, t3: IR <- (MBR)
Option C:	$\begin{aligned} & \text { t1: MBR <- (PC), t2: MAR <- Save-address, PC <- Routine- address, t3: Memory } \\ & \text { <- (MBR) } \end{aligned}$
Option D:	t1: MBR <- (PC), t2: MAR <- Save-address, PC <- Routine- address, t3: Memory <- (MAR)
9.	A microprogrammed control unit design method
Option A:	contain complex logic for sequencing through the many micro-operations of the instruction cycle.
Option B:	is used to implement a control unit that simplifies its design
Option C:	is faster than a hardwired unit
Option D:	is useful when small programs are to be executed
10.	The set of microinstructions is stored in
Option A:	main memory
Option B:	cache memory
Option C:	interleaved memory
Option D:	control memory
11.	Possible approaches to cache coherency does not include
Option A:	Non-cacheable memory
Option B:	Hardware transparency
Option C:	Bus watching with write through
Option D:	Associative memory
12.	In Interleaved memory, the upper order bits of the address is used to
Option A:	get block address

Option B:	get the data
Option C:	select a word within a memory bank
Option D:	select the given memory bank.
13.	Which of the following statements is correct in regards of memory
Option A:	The memory that is farthest away from processor is the costliest
Option B:	The memory that is smallest is the farthest.
Option C:	The smallest and fastest memory are always closer to the processor
Option D:	As we move away from the processor, the speed increases
14.	Which of the following type of memory is used for cache memory?
Option A:	DRAM
Option B:	SRAM
Option C:	SDRAM
Option D:	EPROM
15.	\qquad mapping permits each main memory block to be loaded into any line of the cache
Option A:	Associative Mapping
Option B:	Direct Mapping
Option C:	Set Associative Mapping
Option D:	Data Mapping
16.	Interrupt is a signal
Option A:	which has highest priority from hardware or software which processor should process its signal immediately
Option B:	which has lowest priority from hardware or software which processor should process its signal later
Option C:	which has highest priority from hardware or software which processor should process its signal later
Option D:	which has lowest priority from hardware or software which processor should process its signal immediately.

17.	Which I/O data transfer technique has direct I/O to memory transfer?
Option A:	I/O module
Option B:	Programmed I/O
Option C:	Interrupt driven I/O
Option D:	DMA
18.	In Flynn's taxonomy, vector and array processors are classified as
Option A:	MIMD
Option B:	SISD
Option C:	SIMD
Option D:	MISD
19.	A hazard that occurs if the write operations take place in the reverse order of the intended sequence is
Option A:	RAR
Option B:	WAW
Option C:	RAW
Option D:	WAR
Option A:	original order of the instructions in the program
Option C:	different sub-steps of sequential instructions simultaneously
Option D:	in an order of availability of operands
On.	In out-of-order processor, the instructions are executed
Opth as program sequence	

Q2 (20 Marks)	
A	Solve any Two
i.	Write a note on Performance measures for computer system

ii.	Explain State table and delay element methods for Hardwired Control Unit Design.
iii.	Explain DMA with diagram
B	Solve any One
i.	Explain Booth's Algorithm with flowchart. Hence solve -7* -3
ii.	Explain the concept of paging with allocation of free frames

Q3 (20 Marks)	
A	Solve any Two
i.	Explain IEEE 754 floating point number representation. Hence represent 186.42 in single precision format
ii.	Explain Cache Coherency with Write Policies
iii.	Explain Flynn's Classification with examples and diagrams
B	Solve any One
i.	Explain 6 stages instruction pipelining with effect of conditional branch
ii.	Explain Multi-core processor architecture with diagram

University of Mumbai

Examination June 2021

Examinations Commencing from $1^{\text {st }}$ June 2021

Program: Computer Engineering

Curriculum Scheme: Rev2016
Examination: SE Semester IV
Course Code: CSC403 and Course Name: Computer Organization and Architecture

Question Number	Correct Option (Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	B
Q2.	C
Q3.	D
Q4	D
Q5	B
Q6	A
Q7	C
Q8.	B
Q9.	B
Q10.	D
Q11.	C
Q12.	C
Q13.	B
Q14.	A
Q15.	A
Q16.	D
Q17.	C
Q18.	B
Q19.	D
Q20.	

Q2 A
i. Different performance measures of computer system 5 Marks
ii. Explanation of State table method with diagram 2.5 Marks

Explanation of Delay element method with diagram 2.5 Marks
iii. DMA diagram 1 Mark

DMA flowchart 1 Mark
Explanation of DMA 3 Marks

Q2 B
i. Booth's Algorithm 2 Marks

Booth's Flowchart 2 Marks
Numerical 6 Marks
ii. Concept of paging with allocation of free frames along with diagram 10 Marks

Q3 A

i. IEEE 754 floating point number representation for single precision and double precision with the formats 2 Marks

Representing 186.42 in single precision format 3 Marks
ii. Concept of Cache Coherency 2 Marks

Write Policies 3 Marks
iii. Flynn's Classification with examples and diagrams 5 marks

Q3 B
i. Explanation of 6 stages instruction pipelining with diagram 6 Marks effect of conditional branch 4 Marks
ii. Explanation of Multi-core processor architecture with diagram 10 Mraks

University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination: SE Semester IV
Course Code: CSC404 and Course Name: Computer Graphics
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The anti-aliasing procedure that increases the number of intensity levels for each pixel to the total number of sub-pixels is called \qquad
Option A:	Pixel shaping
Option B:	Area-sampling
Option C:	Pixel Phasing
Option D:	Super-sampling
2.	Random (vector) scan display uses \qquad to store the picture/image information and they are mainly used for applications like \qquad _.
Option A:	Bitmap file, Color drawing application
Option B:	Data file, pixel drawing application
Option C:	Frame buffer, image drawing application
Option D:	Display file, line drawing application
3.	Reflection of a point about x -axis ,followed by a counter-clockwise rotation of 90° is equivalent to reflection about the line \qquad _.
Option A:	$\mathrm{X}=-\mathrm{Y}$
Option B:	$\mathrm{Y}=-\mathrm{X}$
Option C:	$\mathrm{X}=\mathrm{Y}$
Option D:	$\mathrm{X}+\mathrm{Y}=1$

4.	By applying properties of \qquad computations are reduced in Scan Line Polygon Fill Algorithm.
Option A:	Relativity
Option B:	Coherence
Option C:	Reference
Option D:	Symmetry
5.	A picture is stored in the computer's memory in _____
Option A:	PDCS
Option B:	WCS
Option C:	NDC
Option D:	WDS
6.	Which curve can be controlled locally?
Option A:	B-Spline
Option B:	Bezier curve
Option C:	Helmite curve
Option D:	Bezier Surface
7.	The projection in which the projection plane is allowed to intersect the x, y and z axes at equal distances.
Option A:	Wire frame model
Option B:	Constructive solid geometry methods
Option C:	Isometric projection
Option D:	Back face removal
8.	The process of representing continuous graphics object as a collection of discrete pixels is called:
Option A:	Rasterization
Option B:	Scan conversion
Option C:	Rendering

Option D:	Discretization
9.	Shear transformations can be expressed in terms of __
Option A:	Rotation only
Option B:	Reflection only
Option C:	Scaling only
Option D:	Product of scaling and rotation
10.	If we rasterize a line segment AB with $\mathrm{A}(-3,3)$ and $\mathrm{B}(4,-4)$ using DDA line algorithm, which are the points that will lie on the line segment?
Option A:	$(-3,3),(-3,2),(-2,1),(1,0),(1,-1),(2,-2),(3,-3),(4,-4)$
Option B:	$(-3,3),(-2,2),(-1,1),(1,1),(1,-1),(2,-2),(3,-3),(4,-4)$
Option C:	$(-3,3),(-2,2),(-1,1),(0,0),(1,-1),(2,-2),(3,-3),(4,-4)$
Option D:	$(-3,3),(-2,2),(-1,1),(1,0),(1,-1),(2,-2),(3,-3),(4,-4)$
11.	The scale factor of view-port transformation for x co-ordinate is ______.
Option A:	$\mathrm{Sx}=(\mathrm{xvmax}-\mathrm{xvmin}) /(\mathrm{xwmax}-\mathrm{xwmin})$
Option B:	$\mathrm{Sx}=(\mathrm{xvmax}-\mathrm{xvmin}) /(\mathrm{xwmax}+\mathrm{xwmin})$
Option C:	$\mathrm{Sx}=(\mathrm{xvmin}-\mathrm{xvmax}) /(\mathrm{xwmax}-\mathrm{xwmin})$
Option D:	$\mathrm{Sx}=(\mathrm{xvmax}+\mathrm{xvmin}) /(\mathrm{x}$ wmax -xwmin$)$
12.	______ are the three dimensional analogs of quad trees.
Option A:	Quadric
Option B:	Octrees
Option C:	Geometry
Option D:	Wireframe models

13.	Painter's algorithm is also called as:
Option A:	Wornock algorithm
Option B:	Area subdivision algorithm
Option C:	Z-buffer algorithm
Option D:	Depth-sort algorithm
14.	Given a circle with radius of 6 -units centered at $(10,15)$, the following are the points that will lie on the $1 / 8$ th part of the circle:
Option A:	$(10,21),(11,21),(12,21),(13,20),(14,19)$
Option B:	(0,6), (1,6), (2,6), (3,5), (4,4)
Option C:	$(0,6),(1,6),(2,5),(3,5),(4,4)$
Option D:	(10,21), (11,21), (12,20), (13,20), (14,19)
15.	Back face detection is:
Option A:	Object space method
Option B:	Image space method
Option C:	Coordinate space method
Option D:	Geometry space method
16.	A triangle ABC with coordinates $\mathrm{A}(4,3), \mathrm{B}(1,1)$ and $\mathrm{C}(7,1)$ is translated by 3units in x-direction and 2-units in y-direction, followed by anticlockwise rotation of the triangle by 90 degrees. The resulted triangle is further scaled to double in $x-$ direction without any scaling in y-direction. What will be the resultant position of the triangle?
Option A:	$A^{\prime}(-10,7), \mathrm{B}^{\prime}(-6,4), \mathrm{C}^{\prime}(-6,-10)$
Option B:	$A^{\prime}(-10,7), \mathrm{B}^{\prime}(-6,-4), \mathrm{C}^{\prime}(-6,10)$
Option C:	$\mathrm{A}^{\prime}(-10,-7), \mathrm{B}^{\prime}(-6,4), \mathrm{C}^{\prime}(-6,10)$
Option D:	$\mathrm{A}^{\prime}(-10,7), \mathrm{B}^{\prime}(-6,4), \mathrm{C}^{\prime}(-6,10)$
17.	The phenomenon of apparent increase in the number of available intensities by considering combine intensity of multiple pixels is known as \qquad
Option A:	Dithering

Option B:	Half toning
Option C:	Printing
Option D:	Scanning
18.	\qquad is used to calculate the intensity of light that is reflected at a given point on surface.
Option A:	Illumination model
Option B:	Rendering model
Option C:	Diffusion model
Option D:	Warn model
19.	In Liang-Barsky line clipping algorithm, if $\mathrm{pk}=0$ and $\mathrm{qk}>=0$, then
Option A:	line is parallel to any one clipping boundary and is completely inside the clipping boundary.
Option B:	line is parallel to any one clipping boundary and is completely outside the clipping boundary.
Option C:	The line is an entering line (outside to inside).
Option D:	The line is exiting line (inside to outside).
20.	Construct the Bezier curve of order-3 with the polygon vertices $\mathrm{A}(0,0), \mathrm{B}(1,2)$, $\mathrm{C}(3,2)$, and $\mathrm{D}(2,0)$. Generate at least 5 points on the curve. (Consider $\mathrm{t}=0.15,0.35,0.5,0.65,0.85$)
Option A:	(0.50,0.76), (1.24,1.36), (1.75,1.5), (2.12,1.36), (2.14,0.76)
Option B:	(0.60,0.76), (1.4,1.36), (1.75,1.5), (2.12,1.36), (2.14,0.76)
Option C:	(0.50,0.76), (1.24,1.36), (2.75,1.5), (2.12,2.36), (2.14,0.76)
Option D:	(0.50,0.96), (1.24,1.36), (1.75,1.5), (2.12,1.36), (2.14,0.76)

Q2.	
A	Solve any Two $\quad \mathbf{5}$ marks each
i.	If an ellipse with x-radius of 4-units and y-radius of 3-units is rasterized using mid-point ellipse algorithm, find the points that lie on the ellipse in the first quadrant.

ii.	Explain Depth buffer algorithm.
iii.	Write a short note on sweep representations.
B	Solve any One $\quad \mathbf{1 0}$ marks each
i.	Triangle PQR has vertices as P(4,3), Q(6,5) and R(5,7). It is Desired to reflect through an arbitrary line L whose equation is $y=x+3$. Calculate the new vertices of triangle.
ii.	Explain any one polygon clipping algorithm in detail.

Q3.	
A	Solve any Two \quad 5 marks each
i.	Given a circle with radius of 6-units centered at (10,15), Find the points that will lie on the 1/8th part of the circle.
ii.	Write a short note on fractals.
iii.	Explain any one shading techniques in detail.
B	Solve any One
i.	Find the clipping co-ordinates to clip the line segment AB against the window using any one line clipping algorithm A(5,12), B(70,50) and the window co-ordinates are lower left corner of the window is (10,10) and upper right corner is (60,60).
ii.	Explain 3D clipping in detail.

University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination: SE Semester IV
Course Code: CSC404 and Course Name: Computer Graphics
Time: 2 hour
Max. Marks: 80

Answer Key for Subjective Questions:

Question Number	Correct Option Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' $\mathbf{}$ ' ''
Q1.	D
Q2.	D
Q3.	C
Q4	B
Q5	B
Q6	A
Q7	C
Q8.	B
Q9.	D
Q10.	C
Q11.	A
Q12.	B
Q13.	D
Q14.	A
Q15.	A
Q16.	D
Q17.	B
Q18.	A
Q19.	A
Q20.	A

Q. 2 A)

i) Ans: $(0,3),(1,3),(2,3),(3,2),(4,1),(4,0)---$ 5Mks
ii) Explanation of Depth buffer algorithm --2 Mks

Algorithm -- 2 Mks
Adv \& Dis adv -- 1 Mks
iii) Sweep representations:-

Translational sweep ---- 2.5 Mks
Rotational sweep ---- 2.5 Mks
Q. 2 B)
i) Ans: Ans: $\mathrm{P}^{\prime}(0,7), \mathrm{Q}^{\prime}(2,9), \mathrm{R}^{\prime}(4,8)$
ii)Sutherland Hodgeman / Weiler Artherton Polygon clipping

Explanation of algo and steps of algo -- 5
Mks
Example of algo working --- 5 Mks

Q. 3 A)

i) Ans: $(10,21),(11,21),(12,21),(13,20)$, $(14,19)$--- 5 Mks (1 Mks for each point)
ii) Explanation of fractal and their uses/ application: 2 Mks

Examples of fractal : Koch curve / Hilbert's Curve ---- 3 Mks
iii) Explanation of Gouraud / Phong shading with proper diagram-----3Mks

Merits --- 1Mks
Demerits --- 1Mks

Q. 3 B)

i) Ans: $\mathrm{A}^{\prime}(10,15.33)$ and $\mathrm{B}^{\prime}(60,48.66)$
ii) Explanation of 3D clipping : defining region codes for all regions, clipping process, algorithm steps ----- 5 Mks

Algorithm steps with suitable examples--- 3
Mks
Merits and Demerits --- 2 Mks

University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination: BE Semester IV
Course Code: CSC405 and Course Name: Operating System
Time: 2 hour
Max. Marks: 80

Q1.	A program is called as
Option A:	Active
Option B:	Passive
Option C:	Running
Option D:	Dead
Q2.	Which of following is not the function of the Kernel?
Option A:	Process Management
Option B:	Memory Management
Option C:	Device Management
Option D:	Program Compilation
Q3.	A Binary semaphore is restricted to values of
Option A:	0 or 1
Option B:	1 or 2
Option C:	-1 or +1
Option D:	0 or -1
Q4.	What is a shell script?
Option A:	Group of commands
Option B:	A file containing special symbols
Option C:	A file containing a series of commands
Option D:	Group of functions
Q5.	

	Consider above preemptive. Wh	Arrival Time 0 1 2 3P1 8 processes to at the waiti	Execute Time 5 3 8 6 to be execut ng time of	Service Time 0 5 8 16 $\left.\right\|_{16} \quad$ P3 d on first c 2?	, first serve basis. It is a non-
Option A:	6				
Option B:	8				
Option C:	16				
Option D:	0				
Q6.	If the time quan which one of the	tum is mad following	de very larg assertions	for a Ro ould be tr	Robin (RR) scheduler, then
Option A:	The scheduling algorithm	algorithm	degenerate	to the F	Come First Served (FCFS)
Option B:	More context sw	itches occur			
Option C:	The average turn	around tim	e decreases		
Option D:	The scheduling	algorithm d	degenerates	o the Sho	Job Next (SJN) algorithm
Q7.	The Primary dist	inction bet	ween Short	term sched	r and Long-term scheduler is
Option A:	The Length of th	heir queues			
Option B:	The type of proc	ess they sc	hedule		
Option C:	The frequency of	f their exec	ution		
Option D:	The device for w	hich the sc	chedule the	process	
Q8.	Determine the following order accommodate 3 page 1 having b	number of $1,2,4$, pages and een brough	page fault $5,2,1,2$ the main m t earlier than	when re 4. Assum emory alre page 2.	nces to pages occur in the that the main memory can has the pages 1 and 2 , with algorithm is used)
Option A:	3				
Option B:	5				
Option C:	4				
Option D:	1				
Q9.	Disk requests ar this order. A see to server these r arm cylinder is a yet served	e received k takes 7 m equests for 20 when t	by a disk d ms per cylin a Shortest he last of the	ive for cyl er moved. Seek First se requests	ers 5, 25,18,3,39,8 and 35 in ow much seek time is needed SF) Algorithm? Assume that made with one of the request
Option A:	125 ms				
Option B:	413 ms				

Option C:	368ms
Option D:	750 ms
Q10.	A counting semaphore was initialized to 13 . Then 10 P (wait) operations and 4V (signal) operations were completed on this semaphore. The resulting value of the semaphore is
Option A:	10
Option B:	8
Option C:	7
Option D:	16
Q11.	In Dinning Philosopher Problem, deadlock can occur
Option A:	If all philosophers pick their left chopstick simultaneously and wait for the other chopstick to be available
Option B:	If all philosophers pick up both the sticks
Option C:	If no philosopher picks up sticks
Option D:	If only two philosophers pick up two sticks
Q12.	Three processes having burst time of 3,10 and 7 time units each arrive simultaneously at time 0 . Using non-preemptive SJF scheduling, their total waiting time is
Option A:	4
Option B:	3
Option C:	20
Option D:	10
Q13.	Consider a disk where blocks $1,2,3,4,5,8,9,10,11,12,13,17,18,25,26$ and 27 are free and the rest of the blocks are allocated. Then the free space bitmap would be
Option A:	10000110000001110011111100011111...
Option B:	110000110000001110011111100011111...
Option C:	01111001111110001100000011100000...
Option D:	11111001111110001100000011100000...
Q14.	Which of following two atomic operations semaphore uses for process synchronization.
Option A:	Wait, Signal
Option B:	add, del
Option C:	W, X
Option D:	not wait , not signal
Q15.	In segmentation, each address is specified by
Option A:	An offset \& value
Option B:	A value \& segment number
Option C:	A key \& value
Option D:	A segment number \& offset
Q16.	Working set model for page replacement is based on the assumption of
Option A:	Modularity

Option B:	Locality
Option C:	Globalization
Option D:	Random access
Q17.	Thrashing occurs when
Option A:	When a page fault occurs
Option B:	Processes on system frequently access pages not memory
Option C:	Processes on system are in running state
Option D:	Processes on system are in waiting state
Q18.	Which statement is true for indexed file allocation method?
Option A:	Each file must occupy a set of contiguous blocks on the disk
Option B:	All the pointers to scattered blocks are placed together in one location
Option C:	All pointer are NULL
Option D:	Entire file is stored in one block
Q19.	Which of following is responsible for all file I/O initiation and termination.
Option A:	Device drivers
Option B:	Physical I/O
Option C:	Basic I/O supervisor
Option D:	Logical I/O
Q20.	A Translation look aside buffer can be used to
Option A:	To reduce the time taken to access the page table again and again.
Option B:	To increase the time taken to access the page table again and again.
Option C:	To equalize the time taken to access the page table again and again.
Option D:	To moderate the time taken to access the page table again and again.

Q2	
A	Solve any Two
i.	Describe the Producer and Consumer synchronization problems.
ii.	Explain the difference between preemptive and non-preemptive scheduling. deadlock.
iii.	Solve any One
B	Assume you have the following jobs to execute with one processor, with the jobs arriving in the order listed here: i i. T(pi)
i. 80	
1	20
2	10
3	20
4	50
a. Suppose a system uses FCFS scheduling .Create a Gantt chart illustrating	
the execution of these processes?	
b. What is the turnaround time for process p3?	
c. What is the average wait time for the processes?	

ii.	A system uses 3 page frames for storing process pages in main memory. It uses the First in First out (FIFO) page replacement policy. Assume that all the page frames are initially empty. What is the total number of page faults that will occur while processing the page reference string given below- $4,7,6,1,7,6,1,2,7,2$ Also calculate the hit ratio and miss ratio.

Q3.	Solve any Four out of Six \quad 5 marks each
A	Describe Inter process communication (IPC) in brief.
B	Define and describe the Memory Allocation Strategies Best-Fit, First Fit, and Worst Fit \& Next Fit.
C	List the various functions of operating system and describe any one in brief.
D	Differentiate between paging and segmentation.
E	List the different accessing methods of a file and describe any one in detail.
F	Compare the various Disk-Scheduling algorithms.

University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination: BE Semester IV
Course Code: CSC405 and Course Name: Operating System
Time: 2 hour

Question Number	Correct Option (Enter either 'A' or ' \mathbf{B} or ' \mathbf{C}^{\prime} or ' \mathbf{D}^{\prime} ')
Q1.	B
Q2.	D
Q3.	A
Q4	C
Q5	A
Q6	A
Q7	C
Q8.	C
Q9.	B
Q10.	C
Q11.	A
Q12.	D
Q13.	D
Q14.	A
Q15.	D
Q16.	B
Q17.	B
Q18.	B
Q19	C
Q20	A

Q2	
A	Solve any Two 5 marks each
i.	Describe the Producer and Consumer synchronization problems. Ans: Probable points in answer should be The producer consumer problem is a synchronization problem. There is a fixed size buffer and the producer produces items and enters them into the buffer. The consumer removes the items from the buffer and consumes them. A producer should not produce items into the buffer when the consumer is consuming an item from the buffer and vice versa. So the buffer should only be accessed by the producer or consumer at a time. The producer consumer problem can be resolved using semaphores.
ii.	Explain the difference between preemptive and non-preemptive scheduling. Ans: Preemptive scheduling allows a process to be interrupted in the midst of its execution, taking the CPU away and allocating it to another process. Non preemptive scheduling ensures that a process relinquishes control of the CPU only when it finishes with its current CPU burst.
iii.	Write about Banker's Algorithm for Single \& Multiple Resources to avoid deadlock. Ans: Probable points in answer should be The Banker's algorithm is a resource allocation and deadlock avoidance algorithm that tests for safety by simulating the allocation for predetermined maximum possible amounts of all resources, then makes an "sstate" check to test for possible activities, before deciding whether allocation should be allowed to continue.
B	Solve any One 10 marks each
i.	Assume you have the following jobs to execute with one processor, with the jobs arriving in the order listed here: i $\quad \mathbf{T}(\mathbf{p i})$ 080 120 210 320 450 a. Suppose a system uses FCFS scheduling .Create a Gantt chart illustrating the execution of these processes? b. What is the turnaround time for process p 3 ? c. What is the average wait time for the processes? Ans: a. The Gantt chart: $0-80-100-110-130-180$ b. The turnaround time for process p 3 is T.A. $(\mathrm{p} 3)=\mathrm{T}(\mathrm{p} 3)+$ T.A. $(\mathrm{p} 2)$ $=T(\mathrm{p} 3)+(\mathrm{T}(\mathrm{p} 2)+\mathrm{T} . \mathrm{A} .(\mathrm{p} 1))$ $=\mathrm{T}(\mathrm{p} 3)+(\mathrm{T}(\mathrm{p} 2)+(\mathrm{T}(\mathrm{p} 1)+\mathrm{T} . \mathrm{A} .(\mathrm{p} 0)))$ $=\mathrm{T}(\mathrm{p} 3)+(\mathrm{T}(\mathrm{p} 2)+(\mathrm{T}(\mathrm{p} 1)+\mathrm{T}(\mathrm{p} 0)))$ $=20+10+20+80=130$.

	c. Average waiting time calculation: Waiting Time for process $\mathrm{p} 0=0$ sec., $\mathrm{p} 1=80$ sec., $\mathrm{p} 2=100 \mathrm{sec}$. , $\mathrm{p} 3=110 \mathrm{sec}$., $\mathrm{p} 4=130 \mathrm{sec}$. The average waiting time $=(0+80+100+110+130) / 5=84 \mathrm{sec}$
ii.	A system uses 3 page frames for storing process pages in main memory. It uses the First in First out (FIFO) page replacement policy. Assume that all the page frames are initially empty. What is the total number of page faults that will occur while processing the page reference string given below- $4,7,6,1,7,6,1,2,7,2$ Also calculate the hit ratio and miss ratio. Ans: Total number of references $=10$ Total number of page faults occurred $=6$ Hit ratio- Total number of page hits $=$ Total number of references - Total number of page misses or page faults $=10-6$ $=4$ Hit ratio $=$ Total number of page hits / Total number of references $=4 / 10$ $=0.4 \text { or } 40 \%$ Miss ratio- Total number of page misses or page faults $=6$ Miss ratio $\begin{aligned} & =\text { Total number of page misses } / \text { Total number of references } \\ & =6 / 10 \\ & =0.6 \text { or } 60 \% \end{aligned}$

Q3.	Solve any Four out of Six

A	Describe Inter process communication (IPC) in brief. Ans: Probable answer should be Interposes communication is the mechanism provided by the operating system that allows processes to communicate with each other. This communication could involve a process letting another process know that some event has occurred or the transferring of data from one process to another
	Define and describe the Memory Allocation Strategies Best-Fit, First Fit, and Worst Fit \& Next Fit. Ans: Probable points in answer should be In the first fit approach is to allocate the first free partition or hole large enough which can accommodate the process. It finishes after finding the first suitable free partition. The best fit deals with allocating the smallest free partition which meets the requirement of the requesting process
C	List the various functions of operating system and describe any one in brief. Ans: An operating system has three main functions: (1) manage the computer's resources, such as the central processing unit, memory, disk drives, and printers, (2) establish a user interface, and (3) execute and provide services for applications software.
E	Differentiate between paging and segmentation. Ans: Paging in operating systems, is a memory management scheme, operating system retrieves data from secondary storage in same-size blocks referred to as pages. Paging is to divide each process in the form of pages. The main memory will also be divided in the form of frames and therefore one page of the process is to be stored in one frames of the memory. Paging decreases the efficiency of the system as it can divide the same function into different pages which may or may not be loaded into memory at the same time. D
Direct Access, Indexed access, Sequential Access	

	Sequential Access: This is the most common method. Here the information present in the file is accessed in a sequential fashion, one record after the other. ...
F	Compare the various Disk-Scheduling algorithms. Ans: Comparison of scheduling algorithms FCFS SJF RR SRTN Multilevel Feedback Etc. along with their performance parameters

