K. J. Somaiya Institute of Engineering and Information Technology Sion, Mumbai - 400022 NAAC Accredited Institute with 'A' Grade

NBA Accredited 3 Programs (Computer Engineering, Electronics & Telecommunication Engineering and Electronics Engineering) Permanently Affiliated to University of Mumbai

EXAMINATION TIME TABLE (JUNE 2021)

PROGRAMME - S.E. (Computer) (REV. -2016) (Choice Based)

Paper **Days and Dates** Time Paper Code **CSC401** Tuesday, June 1, 2021 11:30 a.m. to 1:30 p.m. **APPLIED MATHEMATICS - IV** Thursday, June 3, 2021 11:30 a.m. to 1:30 p.m. **CSC402 ANALYSIS OF ALGORITHMS COMPUTER ORGANIZATION CSC403** Saturday, June 5, 2021 11:30 a.m. to 1:30 p.m. **AND ARCHIECTURE** Tuesday, June 8, 2021 11:30 a.m. to 1:30 p.m. **CSC404 COMPUTER GRAPHICS** Thursday, June 10, 2021 11:30 a.m. to 1:30 p.m. **CSC405 OPERATING SYSTEM**

SEMESTER - IV

Important Note: • Change if any, in the time table shall be communicated on the college web site.

Mumbai 12th May, 2021

Meer

Principal

Examination 2021 under cluster __ (Lead College: _____)

Examinations Commencing from 1st June 2021 to 10th June 2021

Program: BE (COMPUTER ENGINEERING)

Curriculum Scheme: 2016

Examination: SE Semester IV

Course Code: CSC401 and Course Name: Applied Mathematics IV

Time: 2hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	If a random variable X has following probability distribution, then find the
	moment generating function
	$ \mathbf{x} 0 1 2 3 4 $
	$\mathbf{P} (\mathbf{X} = \mathbf{x}) 1/5 1/5 1/5 1/5 1/5$
Option A:	$\frac{1}{8}[1 - e^t + e^{2t} - e^{3t} + e^{4t}]$
Option B:	$\frac{1}{16} [1 + e^t + e^{4t} + e^{9t} + e^{16t}]$
Option C:	$\frac{1}{16} [1 - e^t + e^{2t} - e^{3t} + e^{4t}]$
Option D:	$\frac{1}{5}[1+e^t+e^{2t}+e^{3t}+e^{4t}]$
2.	Evaluate $\int_{c} z^{3} dz$, where c is the upper half of a circle $ z = 1$
Option A:	0
Option B:	2/3
Option C:	-2/3
Option D:	2/3i
3.	Three factories A, B and C produces 30%, 50% and 20% of the total production of an item. Out of their production 80%, 50% and 10% are defective respectively. An item is chosen randomly and found to be defective. Find the probability that it was produced by the factory A?
Option A:	0.47
Option B:	0.57
Option C:	0.67
Option D:	0.77
4.	The average marks scored by 33 boys is 73 with standard deviation 9 while that of 37 girls is 71 with standard deviation 7 find the value of calculated standard normal variate 'z'
Option A:	2
Option B:	2.32
Option C:	1.03
Option D:	1.72

5.	The dual of the following LPP is
	$Max \ z = 5x_1 + 2x_2$
	Subject to : $3x_1 + 2x_2 \le 17$,
	$2x_1 + 2x_2 \le 7$
	$x_1 + 2x_2 \le 19$
Option A:	$Min z = 17y_1 + 7y_2 + 19y_2$
	Subject to : $3y_1 + 2y_2 + y_3 \le 5$,
	$2y_1 + 2y_2 + 2y_3 \le 19$
	$y_1, y_2, y_3 \ge 0$
Option B:	$Min z = 17y_1 + 7y_2 + 19y_2$
	Subject to : $3y_1 + 2y_2 + y_3 \ge 5$,
	$2y_1 + 2y_2 + 2y_3 \le 19$
Option C:	$y_1, y_2, y_3 \le 0$ Min z - 5y + 2y + 19y
Option C.	Subject to $3y_1 + 2y_2 + 19y_2 = 17$
	$\begin{array}{c} 3u_{1} = 2y_{2} + 2y_{2} + y_{3} \geq 17, \\ 2y_{1} + 2y_{2} + 2y_{3} \geq 7 \end{array}$
	$y_1 + 2y_2 + 2y_3 = 7$ $y_1, y_2, y_2 > 0$
Option D:	$Min z = 17v_1 + 7v_2 + 19v_2$
1	Subject to : $3y_1 + 2y_2 + y_3 \ge 5$,
	$2y_1 + 2y_2 + 2y_3 \ge 2$
	$y_1, y_2, y_3 \ge 0$
6.	If $A = \begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & 1 \end{bmatrix}$ then the minimal polynomial of a matrix A is
	$\begin{bmatrix} n & A \\ -4 & -4 \end{bmatrix}$, then the minimal polynomial of a matrix A is
Option A:	$x^2 - 5x + 36$
Option B:	$x^2 - 4$
Option C:	$x^2 - 15x + 36$
Option D:	$x^3 - 7x^2 + 16x - 12$
7	Suppose we know that births in a hospital occur randomly at an average rate of 1.8
/.	births per hour. What is the probability that we observe 5 births in a given 2-hour
	interval
Option A:	0.3681
Option B:	0.1377
Option C:	0.031
Option D:	0.0253
8	$\rho^{2\pi z}$
0.	Evaluate $\int_C \frac{d}{z+i} dz$, where c is a circle $ z+i = 1$
Option A:	$-2\pi i/e$
Option B:	$2\pi i$
Option C:	$-2\pi i e^3$
Option D:	$-2\pi i e^{-3}$
0	The entired solution of the LDD $Max 7 - 2x + 5x$ subject to
2.	The optimal solution of the LFP, $Mux \cdot Z = 2x_1 + 5x_2$ subject to
	$x_1 + 5x_2 \le 5$
	$3x_1 + 2x_2 \le 6, \ x_1, x_2 \ge 0$ is
Option A:	$x_1 = 0, x_2 = -2, Z = -10$
Option B:	$x_1 = 2, x_2 = 0, Z = -4$
Option C:	$x_1 = 2, x_2 = 0, Z = 4$

Option D:	$x_1 = 2, x_2$	= 0 , Z	= 2					
10.	If $A = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ -3 \end{bmatrix}$, th	ie the ma	trix e ^A is				
Option A:	$\begin{bmatrix} 3^{-A} & 0 \\ 0 & 2^{-A} \end{bmatrix}$							
Option B:	$\begin{bmatrix} 2^A & 0 \\ 0 & 3^A \end{bmatrix}$							
Option C:	$\begin{bmatrix} e^{-2} & 0 \\ 0 & e^{-3} \end{bmatrix}$							
Option D:	$\begin{bmatrix} e^3 & 0 \\ 0 & e^2 \end{bmatrix}$							
11.	In a LPP the	constants	c_1, c_2, \dots we dual	c_n in the o	objective f	unction of	the prima	l appear in
Option A:	Objective fu	inction						
Option B:	RHS of con	straints						
Option C:	Coefficients	s of the var	riables in	constraints	6			
Option D:	Slack variab	oles						
12.	If a continue	ous randoi	m variable	X has a p	robability	density fu	nction	
	$f(x) = \frac{x}{2}, 0$	0 < x < 2	, then fir	nd the prob	pability that	it x is grea	ter than 1	
Option A:	1/3							
Option B:	1/2							
Option C:	1/4							
Option D:	3/4							
13.	If $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 2\\1 \end{bmatrix}$, then t	the matri	$x A^2 - 2A$	4 - 3I is			
Option A:	a Null matri	X						
Option B:	The matrix	A itself						
Option C:	$\begin{vmatrix} -2 & -1 \\ 0 & 1 \end{vmatrix}$							
Option D:	[-2 -2]							
option D.	$\begin{bmatrix} -1 & -1 \end{bmatrix}$							
14.	The Eigen va	lues of the	Matrix A	$= \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -2\\0\\0 \end{bmatrix}$ are			
Option A:	1, 1, 9							
Option B:	0, 1, -1							
Option C:	1, 9, 2							
Option D:	1, 2, -1							
15.	The number	of the ac	cidents in	a city dur	ing a wee	k is given	as follows	s. Find the
	χ^2 calculate	ed value a	and test th	e hypothe	sis that ac	cidents ar	e distribu	ted evenly
	over the we	ek. [<i>giver</i>	$i \chi^2 = 12$.59 at 6 d	legrees o	f freedo	n and 5%	LOS
	Dav	1	2	3	4	5	6	7
	No. of	10	-					,
	accidents	10	11	9	8	12	9	11

Option A:	$\chi^2 = 2.2$, Hypothesis rejected			
Option B:	$\chi^2 = 1.2$, Hypothesis rejected			
Option C:	$\chi^2 = 1.2$, Hypothesis accepted			
Option D:	$\chi^2 = 2.2$, Hypothesis accepted			
16.	The oil paint is marketed in the tin of 12 kgs. If sample of 40 tins showed the mean			
	weight as 11.8kg with standard deviation 2 kgs. Find the calculated absolute value			
	of test statistic z.			
Option A:	0.8975			
Option B:	0.6325			
Option C:	0.8124			
Option D:	0.7895			
17				
17.	The residue of $f(z) = \frac{e}{z^3}$ at its pole			
Option A:	4			
Option B:	2			
Option C:	0			
Option D:	-2/3			
10				
18.	If $f(z) = \frac{1}{z-2} - \frac{1}{z-1}$, then the Taylor's series of $f(z)$ in			
	the region of convergence $ z < 1$ is			
Option A:	$\begin{bmatrix} 1 \\ z \\ z^2 \\ z^3 \end{bmatrix}$ $\begin{bmatrix} 1 \\ z \\ z^2 \\ z^3 \end{bmatrix}$			
	$\left \frac{-2}{2} \right ^{1} - \frac{-2}{2} + \frac{-3}{4} - \frac{-3}{8} + \cdots + \frac{-1}{4} + \frac{-3}{4} + \frac{-3}{$			
Option B:	$1 \begin{bmatrix} z & z^2 & z^3 \end{bmatrix}$			
	$\left -\frac{1}{2} \right ^{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \left[+ \left[1 - z + z^{2} - z^{3} + \cdots \right] \right]$			
Option C:	$1\begin{bmatrix} z & z^2 & z^3 \\ z & z^2 & z^3 \end{bmatrix}$			
	$\begin{bmatrix} -\frac{1}{z} \begin{bmatrix} 1+\frac{1}{2!}+\frac{1}{4!}+\frac{1}{8!}+\cdots \end{bmatrix} + \begin{bmatrix} 1+\frac{1}{z}+$			
Option D:	$1\begin{bmatrix} z & z^2 & z^3 \\ 1 & z & z^2 & z^3 \end{bmatrix}$			
	$\left \frac{-2}{2} \right ^{1} + \frac{2}{2} + \frac{4}{4} + \frac{8}{8} + \cdots + \left[1 + \frac{2}{2} + \frac{2^{2}}{2} + \frac{2^{3}}{3} + \cdots \right]$			
19.	[2 0 0]			
	For Diagonalizable matrix $A = \begin{bmatrix} 0 & 4 & 5 \end{bmatrix}$,			
Option A:	Algebraic Multiplicity ≠ Geometric Multiplicity			
Option B:	Algebraic Multiplicity = Geometric Multiplicity = 1			
Option C:	Algebraic Multiplicity = 2 , Geometric Multiplicity = 1			
Option D:	Algebraic Multiplicity = Geometric Multiplicity = 2			
20	∇T			
20.	The value of the $\int_{-\infty} \frac{1}{x^2+4} dx$ using contour integration is			
Option A:	$\left \frac{\pi}{-}\right $			
	2			
Option B:	π			
Option C:				
Option D:	$ 2\pi i$			

Q2	Solve any Four out of Six5 marks each
А	Evaluate $\int_{c} \frac{e^{2z}}{(z-1)^{3}} dz$, $c: z+i = 2$ using Cauchy's Residue theorem
В	Find the Eigen values and Eigen vectors of $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$
С	Find the probability that at most 2 defective fuses will be found in a box of 200 fuses. If experience shows that 2% of such fuses are defective?
D	A Principal at certain school claims that the students in his school are above average intelligence. A random sample of 30 students IQ scores have a mean score of 112.5. Is there sufficient evidence to support the principal's claim? The mean population IQ is 100 with standard deviation of 15.
Е	The manufacturer of a certain make of LED bulb claims that his bulbs have a mean life of 20 months. A random sample of 7 such bulbs gave the following values. Life of bulbs in months: 19, 21, 25, 16, 17, 14, 21. Can you regard the producer's claim to be valid at 1% level of significance?
F	Solve the LPP by simplex method, $Max \ Z = 4x_1 + 10x_2$ $Sub. to. 2x_1 + x_2 \le 50$ $2x_1 + 5x_2 \le 100$ $2x_1 + 3x_2 \le 90$, $x_1, x_2 \ge 0$

Q3	Solve any Four out of Six		5 mar	ks each	
А	Obtain Taylor's and Laurent's exp convergence $ z - 2 < 1$	cansions of $f(z)$	$=\frac{z-1}{z^2-2z-3}abou$	t z = 2 in	the region of
В	$If A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}, Obtain the$	minimal polyno	omial and Eigen	values o	f 3A ⁻¹
С	If the probability that an individu 0.001, determine the probability th two individuals will suffer a bad re	ual suffers a bac pat out of 2000 in paction.	l reaction from ndividuals i) exa	particula ctly three	r infection is ii) more than
D	In the Normal distribution exactly 30% of items are below 45 and 8% of the items are above 64. Find the mean and variance of normal distribution.				
E	The following table gives the data hypothesis that educated fathers ha Educated Fathers Uneducated fathers Total	of boys and thei ave intelligent bo Intelligent sons 50 45 95	r fathers. Do the bys? Unintelligent sons 45 90 135	Total 95 135 230	support

F	Optimize	$x_1^2 +$	x_2^2 -	$+ x_3^2 -$	$-6x_1 -$	$-8x_2 -$	$10x_{3}$
---	----------	-----------	-----------	-------------	-----------	-----------	-----------

University of Mumbai Examination 2021 under cluster __ (Lead College: _____) Examinations Commencing from 1st June 2021 to 10th June 2021 Program: BE (COMPUTER ENGINEERING) Curriculum Scheme: 2016 Examination: SE Semester IV Course Code: CSC401 and Course Name: Applied Mathematics IV Time: 2hour Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	А
Q3.	А
Q4	С
Q5	D
Q6	С
Q7	В
Q8.	В
Q9.	С
Q10.	С
Q11.	В
Q12.	D
Q13.	А
Q14.	D
Q15.	С
Q16.	В
Q17.	В
Q18.	D
Q19.	В
Q20.	А

Examination June 2021

Examinations Commencing from 1st June 2021

Program: Computer Engineering

Curriculum Scheme: Rev 2016

Examination: SE Semester IV

Course Code: CSC402 and Course Name: Analysis of Algorithm

Time: 2 hour

Max. Marks: 80

==================

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	For $f(n) = 2n^2 + 5$ and $g(n) = 7n$ what is the value of n where $f(n) \in \Omega(g(n))$
Option A:	1
Option B:	2
Option C:	3
Option D:	4
2.	For given elements 70, 30, 20, 50, 60, 10, 40, if sort them using selection sort
	then what will be the output after iteration (pass) 3
Option A:	70, 30, 20, 50, 10, 60, 40
Option B:	70, 30, 20, 50, 60, 10, 40
Option C:	10, 20, 30, 50, 60, 70, 40
Option D:	10, 30, 20, 50, 60, 70, 40
3.	In the problem of finding minimum and maximum using straightforward algorithm,
	it take run time
Option A:	O(n ²)
Option B:	Ω (n)
Option C:	O(n)
Option D:	$\theta(\mathbf{n})$
4.	What is time complexity for following list using Quick sort algorithm
	If pivot is the last element.
Option A:	O(n)
Option B:	O(log n)
Option C:	O(nlogn)
Option D:	O(n ²)
5.	What is the time complexity if binary search algorithm used for finding element
	from a set of n elements.
Option A:	O(n)
Option B:	O(nlogn)

Option C:	O(log n)
Option D:	O(n ²)
6.	In fractional Knapsack Problem, suppose $n = 3$, profit = (25, 24, 15), Weight (in kg) = (18, 15, 10) and capacity = 20, then optimal solution having total profit is
Option A:	28.2
Option B:	31
Option C:	31.5
Option D:	32.2
7.	What is the cost of following graph using Kruskal's algorithm
	$\begin{array}{c} 4 \\ a \\ a \\ b \\ a \\ 11 \\ 7 \\ b \\ h \\ 1 \\ g \\ 2 \\ f \\ 10 \\ g \\ 2 \\ f \\ 10 \\ f $
Option A:	37
Option B:	38
Option C:	36
Option D:	39
8.	For a problem, it is strategy that builds a sequence of choices for getting the optimal solution.
Option A:	Backtracking and Branch-and-bound
Option B:	Divide and Conquer
Option C:	Greedy technique
Option D:	Dynamic Programming
9.	In assembly line scheduling problem to go in stations at stage 5 what are the probable ways $e_1 \rightarrow e_1 \rightarrow e_2 \rightarrow e_1 \rightarrow e_2 \rightarrow e$
Option A:	16
Option B:	25
Option C:	32
Option D:	5
10.	In multistage graphs with source S and sink T, which vertex is backward vertex

	while finding the distance from each vertex A, B, C to vertex T.
	Stage 2 Stage 3
	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	Stage 1 Stage 4
	3
Option A:	В
Option B:	C
Option C:	D
Option D:	E
11.	In following graph for the TSP, if the intermediate set $S = \phi$, then using dynamic
	programming the Cost (B, ϕ , E) is
	B
	3
	5 4 5 1 3/2
Ontion A:	1
Option B:	2
Option C:	7
Option D:	, О
Option D.	
12.	Identify spurious hit in the given text string for pattern of length- 5 window
	Detterm: 21415
	Pattern: 51415
	Text: $125978631415794321583141568$
Ontion A.	8-21
Option R:	13-17
Option C:	3-7
Option D:	7-20
- ruon D.	
13.	Apply naive string matching algorithm to find the shift count where pattern
	matches with the Text= abcdabcdyabcdadbadf and pattern= abcdad
Option A:	8
Option B:	9
1	

Option C:	10
Option D:	11
14.	In 15 puzzle problem a node currently being expanded is called
Option A:	Live node
Option B:	E node
Option C:	Dead node
Option D:	Root node
15.	Which of the following statement about 0/1 knapsack and fractional knapsack
	problem is correct?
Option A:	In 0/1 knapsack problem items are divisible and in fractional knapsack items are
	indivisible
Option B:	0/1 knapsack and fractional knapsack both are the same
Option C:	0/1 knapsack is solved using a greedy algorithm and fractional knapsack is solved
	using dynamic programming
Option D:	In 0/1 knapsack problem items are indivisible and in fractional knapsack items are
	divisible
16.	Backtracking algorithm is implemented by constructing a tree of choices called
	as?
Option A:	State-space tree
Option B:	State-chart tree
Option C:	Backtracking tree
Option D:	Node tree
17.	Of the following given options, which one of the following is a correct option
	that provides an optimal solution for 4-queens problem?
Option A:	(4,3,2,1)
Option B:	(2,3,1,4)
Option C:	(3,1,4,2)
Option D:	(4,2,3,1)
18.	is the class of decision problems that can be solved by non-
	deterministic polynomial algorithms?
Option A:	Р
Option B:	NP
Option C:	Complete
Option D:	Hard
19.	To which of the following class does a CNF-satisfiability problem belong?
Option A:	NP class
Option B:	P class
Option C:	NP hard
± ·	

Option D:	NP complete
20.	What is vertex coloring of a graph?
Option A:	A condition where all vertices should have same color
Option B:	A condition where any two vertices having a common edge should always have
	same color
Option C:	A condition where any two vertices having a common edge should not have same
	color
Option D:	A condition where all vertices should have a different color

Q2	Solve any Four out of Six	5 marks each
А	Define O, Ω , θ notations and find complexity of following recur	rence relations
	i) $T(n) = 4T(n/2) + n^2$ ii) $T(n) = 2T(n/2) + n^3$	
В	Find all possible subsets of weight that sum to m, let n=6,m=30	and
	$w[1:6] = \{5, 10, 12, 13, 15, 18\}$ and draw portion of state space tree	
	Find the MST and its cost using Prim and Kruskal algorithm	
С		
D	Describe terms P, NP, NP complete and NP hard. Explain the N	P completeness
	and reducibility	
F	Sort following list using Quick sort and show the output in passe	es.
	2 8 7 1 3 5 6 4	
F	Describe the String matching with finite automata with suitable	example.

Q3.		
А	Solve any Two5 marks ea	ch
i.	Find an optimal solution to the knapsack instance n=7, W=15,	
	Profit – (10,5,15,7,6,18,3), Weight – (2,3,5,7,1,4,1)	
ii.	Describe 8 queen problem using backtracking method and write minimum 2	
	different ways of keeping the 8 queen where no two queens can attack other.	
iii.	Using Rabin karp string matching algorithm, find the all position where the str	ring

	matches with given pattern.	
	Text= "569821987632198" Pattern = "2198" and q =10	
В	Solve any One10 marks	
i.	Apply all pair shortest path Floyd-Warshall algorithm to following graph and find	
	the all pair shortest path and draw the final graph.	
	2 1 2 3 1 3 5 1 9	
ii.	Determine the LCS of $X = <101000111010>$ and $Y = <01001001010>$	

University of Mumbai Examination June 2021

Examinations Commencing from 1st June 2021

Program: Computer Engineering

Curriculum Scheme: Rev 2016 Examination: SE Semester IV

Course Code: CSC402 and Course Name: Analysis of Algorithm

Time: 2 hour

Max. Marks: 80

Q1	Correct Option	
Question	(Enter either 'A' or 'B' or 'C' or 'D')	
Q1.	С	
Q2.	С	
Q3.	D	
Q4	D	
Q5	В	
Q6	С	
Q7	А	
Q8.	С	
Q9.	С	
Q10.	D	
Q11.	В	
Q12.	D	
Q13.	В	
Q14.	В	
Q15.	D	

Q16.	А
Q17.	С
Q18.	В
Q19.	D
Q20.	C

Q2	Solve any Four out of Six	5 marks each
Q2	Solve any Four out of Six Define O, Q, θ notations and find complexity of following rec $T(n) = 4T(n/2) + n^2$ ii) $T(n) = 2T(n/2) + n^3$ Ave: Defining asymptotic potation O, -A, tet $f(n) \ge g(n)$ be 2 non-ve fur if $f(n) \le c.g(n)$ Then $f(n) \le c.g(n)$ if $f(n) \ge c.g(n)$ if	5 marks each currence relations $ \begin{array}{c} $
Α	$ \begin{array}{c} \textcircledleft \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\frac{1}{\sqrt{\frac{1}{1}}} \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}}$

	$T(n) = 2T(n/2) + n^{3}$ $a = 2 b = 2 f(n) = n^{3}$ $\log^{9} = n^{2} = n^{4} \& f(n) = n^{3}$ $comparing n' \stackrel{!}{=} n^{3}$ $comparing n' < n^{3}$ $f(n) = n^{2} (n^{2}g_{1}^{0} + e)$ $n^{3} = -2 (n^{1+e})$
	Find the optimal soln to knapsack.
	$\frac{\text{instance } n=7}{\text{profit} = (10, 5, 15, 7, 6, 18, 3)}$ Weight = (2, 3, 5, 7, 1, 4, 1)
В	Find all possible subsets of weight that sum to m, let n=6,m=30 and w[1:6]={5,10,12,13,15,18} and draw portion of state space tree.

	Suro of subject projete	10	the second second	134
	and 10 = (5,10,10,10,13,1	2,183.1	0=30	
	initially subset = 2 2	sum =	0	
	and a state of state	.5	A Barrar	
	5,10	15	:15 (30	
	5.10.12	27	27<30	
	5,10,12,13	40	40730	balltones
	5,10,12,15	42	42730	barotitoach
	5,10,12,18	45	45730	
	5.10		1	
	510.13	- 28	28 < 30	
	5,10,13,15	33	33730	backback
	5,10,	any I	Dian	
	5,10,15	30		sol obtained
	SI S	USI	Su	m = 30
		ins		
	Similarly we can ob	stain an	other sun	n offsubsel
	(12,18) , (5,12,1	3)	17	
		COT	1383	
	: state space tree.	tr \$5,10	1,12, 13, 13	,18]
		18		
	0	2		
	with	without	5	
	(5)-	-	0	
	with 10 - without	atte	ino	
	10	ig	1/10	and the second second
	Bi Di	60	9	
	the fill i bittent	ith	1 wi	th
	12 3: 12	Wiz	1	2
	· A & A	(25)	(12)	
	the strain it in wo	T	10	10
	2 1 : 013 13	UU	il.	3
	(28) (15) (2)	"	(2)	
	Tr' Twin	()	1 6	0
	with J.O. AIS		J.	5
	i sol a		Q	il. 10
	(Eg		To	ONAPO
	J		(30)	
	Solo		+	00
C	Find the MST and its cost using Prim and	Kruskal algo	orithm	

Pis subset of NP he any problem which is adval by Deterministic algo in polynomial time can be solved by non-deterministic algo in polynomial line. NP complete: problems are the hardest problems IN NP set. A decision problem L is NP complete if I'L is in NP (any given soln for NP-complete problems can be verified quickly, but there is no efficient known solution) 2) Every problem in NP is reducible to Lin poly-nomial time (Reduction is defined below) NPHord - A problem is NP hard if it follows pro property 2 from above, doesn't need to follow property 1. Therefore, NP- complete set is also subset of NP-Hand set. CH HE. 101.9 21 NP Hard I NP Complete NP (vertex) Turning halt shortest ~ cover problem problem path problem, Reduction / Beducibility :-> Let U& Lo be two decision problems. Suppose also Az solves L2. That is, if g is i/p for the there Az will o/p res/NO, depending apon whether y belongs to 12 or not. The idea is to find a Transformation from 4 to 12 so that algo As can be part of algo A1 to solve L1 Algo For Li Yes/ NO Transform for Algo for K2 Yp A P VP for 12 09 10

$$E = \begin{bmatrix} e^{2} & e^{2}$$

Q3.		
А	Solve any Two5 marks each	
i.	Find all possible subsets of weight that sum to m, let n=6,m=30 and w[1:6]={5,10,12,13,15,18} and draw portion of state space tree.	
	item 1' 2 3 4 5 6 7	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	P/Wrsha 10/2 5/3 15/3 7/7 6/1 18/4 3/1	
	iten picker 1 2/3 1 0 1 1 1	
	: Actual capacity => 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	Dow chose item whose P/w ratio is high/more cummulative profit CP=0	
	D chose item no $5 = P/w = 6$ $\therefore CP = 0 + 6 = 6$	
	Capacity remaining = 15-4 = 14	
	(a) Now chose item 1 $P/W = 10/2 = 5$: $CP = 6 + 10 = 16$	
	Capacity = 14 - 2 = 12	

	BMANI CLOSE : LAN & DAVE . F
	CNOW CHOSE HEAR B P/W = 4.5
	$\frac{c_{f}}{c_{f}} = \frac{1}{10 + 18} = \frac{34}{2}$
	(4) NAW chase item 2 plus = 3
	· APT BUTBE 32
	Capacity = 8 - 1 = 7
	signer / = s / · · /
	(3) NOW chose item & PAN = 3
	CP = 33 + 15 = 62
	capacity = 7-5=2
	The state of the s
	(3) Now cap chose item 2 p/w = 1.67
	having wit 3 but remaining capaty is 2
	in Take fraction of that.
	wt left in sack _ 2 item is picked
	what item 3 from item 2
	Theolit demonstration Almand 12
	: profit earned = 2x5 = 10 = 3,334
	: cummulative Profit = 52+3.34 = 55.34
	the knapsack is ==
	wt
	2/3 item 2 (2/3)×5
	item 3 \$ 5
	item 7 > 1
	111=15 1tem 6 3 4
	Item 1 2
	Item 5 1
ii	Describe 8 queen problem using backtracking method and write minimum ?
11.	Describe o queen problem using backtracking method and write minimum 2
	different ways of keeping the 8 queen where no two queens can attack other.

	- is by by quick where to		
	Consider the 8x8 chess board on working athen the		
	8 queens so that no two queens attack ears other		
	being in the same row/coln/diagonal.		
	Now use the to place & queens on the chessboard while		
	is initially inorder. Now we start placing our		
	is intrant and if it and besboard.		
	93 Q4 00		
	thus, the 5 Ourens placed such that no 2 owens attack each		
	Now, to place Q6 at location (6.6) Qr can attack, if Q6 is		
	daved at (67) then or attack it as placed at (68) then ogat		
	Quality of (65) (6,4) (63) (6,2), (6,1) it & placed then 95		
	an or or attacks Of rep. This should use peed to backtoan		
	(2, 04, 01, 03 and a land allogen partitions. It could be		
	and change previous placed queens positions to 6.77 &		
	2 02 3 04		
	3 03 5 5 5		
	4 94 97 96 97		
	5 05 8		
	6 96 But again & capit 6e placed at any empty loc		
	7 A A A A A A A Hence, need to back brack. Anal successful pla		
	8 ment of 1 91		
	an here boy on or on on on on one shows 3 Q3		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	by 5 96		
	Hence we have to backtrack		
	An milliof already placed queers 1 81 1 1 1 1 1 1 1 1		
111.	Using Rabin karp string matching algorithm, find the all position where the string		
	matches with given pattern		
	Text= "569821987632198" Pattern = "2198" and $g = 10$		

	that String			
	$p_{\text{reference}} = 2098 + 138 + 632198 = 15$			
	9=10 (hash) Rey = Pmod & - 2100 % 10 = 8			
	(fu) Kev=8			
	C Now Co C Jank			
	and calculation the hash value to each 4 ducit subo			
	a star 2 10 - 8			
	Here the bash values at substring & pattern			
	are some he e internet patching the each char			
	at a betring & pattern i.e. 5600 & 2198 res.			
	infich are different . This is sourious Hit.			
	abili and hash values to peof substallos			
	Hash valuest stabilize Hash value of Matching			
	Gassing Case No			
	Application 2 No			
	9 0010 % 00 - 9 NO			
	A 21.00/010-0 0 - 01 chast of Pattern			
	Conclude Actual Hites No			
	· Substring mother with matters at inter (
	Linut			
	NENT O NO			
	2 087/10=+ 0 NO			
	9 05769 N 10 2 0 1NO			
	\$ 8100 0 = 5 8 NO			
	8 7632/10=2 8 NO			
	9 63217.10=1 NO			
	10 32197,10 = 9 8 Vel ->			
	1 21987.10 = 8 0			
	rimatching all char of patters & substring at more in			
Б	Salva any One 10			
D	Solve any One 10 marks			
i.	Apply all pair shortest path Floyd-Warshall algorithm to following graph and find			
-				
	the all pair shortest path and draw the final graph.			

	The matrix
	Ding di givas final answer.
	all = dig) for all GJEV
	to The distance of using all pair shortest path algo in
	are as
	10 = 34 1234
	Rez OD I M TERNIN
	SIN N D S SNN 213
	4 00 3 00 0 4 N 4 N N
	& predepettor
	Now, calculating finding the distance matrix D'211 as
	1234 1234
	1 10 (S) 9 00 1 1 N 1 1 N
	$D = 2 (0 0 1 (0)) \qquad H = 2 N N 2 N$
	460 300 410 400
	1.234 1234
	10560 INION
	$p^2 = 2 \otimes 0 \overline{1} \otimes \overline{1} = 2 \otimes N \otimes 2N$
	3 (N N O 2) B N N N 3
	4003 40 4 N 4 (2 N)
	3-200 1 3 53-2 N N 23
	3 0 0 0 2 3 N N N 3
	4 (00 8 4 (0) 4 N 4 2 N
	1234 1234
	10508 1N123
	p' = 2 0 0 1 3 T' = 2 N N 23
	3 2 50 2 3 NA NS
	4 00 3 4 0 4 N 4 2 N
	I TO A LAND COMPANY OF DE
	in The final All pour graph is 342
	235 - 73
ii.	Determine the LCS of $X = <101000111010>$ and $Y = <01001001010>$

Longest common subsequence for strings 'X = 101000111010			
1 = 0.1001.001.01.0			
x $C[i][i] = C[i-1, if-i]+1 = 2e[i]= y[i]$			
C[][] = Max (C[1,j-1], c[i-1,j]) otherwise			
x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
0 0 K1 K2 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 0 0 K1 K2 K3 K3 K3 K4 K4 K4 K4 K4			
0 0 M1 12 K3 K4 M4 K5 K5 M5 K6 46 K6			
$\frac{1}{10} 11 12 13 14 15 15 16 16 17 47 \\ 1 0 11 12 13 14 15 15 15 16 16 17 47 \\ 1 0 0 0 0 0 0 0 0 0 $			
00 51 12 53 54 15 56 56 16 57 17 58			
00 F1 12 K3 F4 85 \$6 F7 17 F8 18 53			
LCS of x & y = (101001010)			

Examination June 2021

Examinations Commencing from 1st June 2021

Program: Computer Engineering

Curriculum Scheme: Rev2016

Examination: SE Semester IV

Course Code: CSC403 and Course Name: Computer Organization and Architecture

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	In restoring division algorithm, after performing operations left shift	
	operation on A,Q and A=A-M, if MSB of $A = 1$ then	
Option A:	Q0= 1	
Option B:	Q0=0, A=A+M	
Option C:	A=A+M	
Option D:	A= A+Q	
2.	Exponent overflow is defined as	
Option A:	a negative exponent exceeds the minimum possible exponent value	
Option B:	a negative exponent exceeds the maximum possible exponent value	
Option C:	a positive exponent exceeds the maximum possible exponent value	
Option D:	a positive exponent exceeds the minimum possible exponent value	
3.	Two's complement representation of +18 and -18 using 16 bits are	
Option A:	00000000011010, 11111111101010	
Option B:	000000000010011, 11111111111111	
Option C:	00000000010110, 111111111111111	
Option D:	000000000010010, 111111111111101110	
4.	Arithmetic and logic unit does not consist of	
Option A:	Status flag	
Option B:	Complementer	

Option C:	Shifter	
Option D:	Control Unit	
5.	To minimize main memory references, the machine or assembly language programmer optimize the use of	
Option A:	Control registers	
Option B:	User visible registers	
Option C:	Status registers	
Option D:	Instruction register	
6.	Identify the correct matching	ng
	Addressing Modes	Description
	1. Direct	a. The address field refers to the address of a word in register, which in turn contains a full-length address of the operand.
	2. Immediate	b. The address field refers to the address of a word in memory, which in turn contains a full-length address of the operand.
	3. Indirect	c. Used to define and use constants or set initial values of variables.
	4. Register Indirect	d. the address field contains the effective address of the operand
Option A:	1-d, 2-c, 3-b, 4-a	
Option B:	1-a, 2-b, 3-c, 4-d	
Option C:	1-b, 2-d, 3-a, 4-c	
Option D:	1-c, 2-a, 3-d, 4-b	
7.	contains a word to	o be stored in memory or sent to the I/O unit, or is used
	to receive a word from mer	mory or from the I/O unit.
Option A:	Instruction Register	
Option B:	Memory Address Register	
Option C:	Memory Buffer Register	
Option D:	Instruction Buffer Register	

8.	When an instruction is to be fetched following micro-operations may be performed	
Option A:	t1: MAR <- (IR(Address)), t2: MBR <- Memory, t3: IR(Address) <- (MBR(Address))	
Option B:	t1: MAR <- (PC), t2: MBR <- Memory, PC <- (PC) + 1, t3: IR <- (MBR)	
Option C:	t1: MBR <- (PC), t2: MAR <- Save-address, PC <- Routine- address, t3: Memory <- (MBR)	
Option D:	t1: MBR <- (PC), t2: MAR <- Save-address, PC <- Routine- address, t3: Memory <- (MAR)	
9.	A microprogrammed control unit design method	
Option A:	contain complex logic for sequencing through the many micro-operations of the instruction cycle.	
Option B:	is used to implement a control unit that simplifies its design	
Option C:	is faster than a hardwired unit	
Option D:	is useful when small programs are to be executed	
10.	The set of microinstructions is stored in	
Option A:	main memory	
Option B:	cache memory	
Option C:	interleaved memory	
Option D:	control memory	
11.	Possible approaches to cache coherency does not include	
Option A:	Non-cacheable memory	
Option B:	Hardware transparency	
Option C:	Bus watching with write through	
Option D:	Associative memory	
12.	In Interleaved memory, the upper order bits of the address is used to	
Option A:	get block address	

Option B:	get the data	
Option C:	select a word within a memory bank	
Option D:	select the given memory bank.	
13.	Which of the following statements is correct in regards of memory	
Option A:	The memory that is farthest away from processor is the costliest	
Option B:	The memory that is smallest is the farthest.	
Option C:	The smallest and fastest memory are always closer to the processor	
Option D:	As we move away from the processor, the speed increases	
14.	Which of the following type of memory is used for cache memory?	
Option A:	DRAM	
Option B:	SRAM	
Option C:	SDRAM	
Option D:	EPROM	
15.	mapping permits each main memory block to be loaded into any	
	line of the cache	
Option A:	Associative Mapping	
Option B:	Direct Mapping	
Option C:	Set Associative Mapping	
Option D:	Data Mapping	
16.	Interrupt is a signal	
Option A:	which has highest priority from hardware or software which processor should process its signal immediately	
Option B:	which has lowest priority from hardware or software which processor should process its signal later	
Option C:	which has highest priority from hardware or software which processor should process its signal later	
Option D:	which has lowest priority from hardware or software which processor should	

17.	Which I/O data transfer technique has direct I/O to memory transfer?	
Option A:	I/O module	
Option B:	Programmed I/O	
Option C:	Interrupt driven I/O	
Option D:	DMA	
18.	In Flynn's taxonomy, vector and array processors are classified as	
Option A:	MIMD	
Option B:	SISD	
Option C:	SIMD	
Option D:	MISD	
19.	A hazard that occurs if the write operations take place in the reverse order of the intended sequence is	
Option A:	RAR	
Option B:	WAW	
Option C:	RAW	
Option D:	WAR	
20.	In out-of-order processor, the instructions are executed	
Option A:	original order of the instructions in the program	
Option B:	different sub-steps of sequential instructions simultaneously	
Option C:	one after the other as per program sequence	
Option D:	in an order of availability of operands	

Q2		
(20 Marks)		
А	Solve any Two	5 marks each
i.	Write a note on Performance measures for computer system	

ii.	Explain State table and delay element methods for Hardwire Design.	ed Control Unit
iii.	Explain DMA with diagram	
В	Solve any One	10 marks each
•	Explain Booth's Algorithm with flowchart. Hence solve -7 * -3	
1.	Explain Booth's Algorithm with flowchart. Hence solve -/	* -3

Q3	
(20 Marks)	
А	Solve any Two5 marks each
i.	Explain IEEE 754 floating point number representation. Hence represent 186.42 in single precision format
ii.	Explain Cache Coherency with Write Policies
iii.	Explain Flynn's Classification with examples and diagrams
В	Solve any One10 marks each
i.	Explain 6 stages instruction pipelining with effect of conditional branch
ii.	Explain Multi-core processor architecture with diagram

Examination June 2021

Examinations Commencing from 1st June 2021

Program: Computer Engineering

Curriculum Scheme: Rev2016

Examination: SE Semester IV

Course Code: CSC403 and Course Name: Computer Organization and Architecture

Time: 2 hour

Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	С
Q3.	D
Q4	D
Q5	В
Q6	А
Q7	С
Q8.	В
Q9.	В
Q10.	D
Q11.	D
Q12.	С
Q13.	С
Q14.	В
Q15.	А
Q16.	А
Q17.	D
Q18.	С
Q19.	В
O20.	D

Q2 A

i. Different performance measures of computer system 5 Marks

ii. Explanation of State table method with diagram 2.5 MarksExplanation of Delay element method with diagram 2.5 Marks

iii. DMA diagram 1 MarkDMA flowchart 1 MarkExplanation of DMA 3 Marks

Q2 B

i. Booth's Algorithm 2 Marks Booth's Flowchart 2 Marks Numerical 6 Marks

ii. Concept of paging with allocation of free frames along with diagram 10 Marks

Q3 A

i. IEEE 754 floating point number representation for single precision and double precision with the formats 2 Marks

Representing 186.42 in single precision format 3 Marks

ii. Concept of Cache Coherency 2 Marks Write Policies 3 Marks

iii. Flynn's Classification with examples and diagrams 5 marks

Q3 B

i. Explanation of 6 stages instruction pipelining with diagram 6 Marks effect of conditional branch 4 Marks

ii. Explanation of Multi-core processor architecture with diagram 10 Mraks

Examination June 2021

Examinations Commencing from 1st June 2021

Program: Computer Engineering Curriculum Scheme: Rev2016

Examination: SE Semester IV

Course Code: CSC404 and Course Name: Computer Graphics

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The anti-aliasing procedure that increases the number of intensity levels for each pixel to the total number of sub-pixels is called
Option A:	Pixel shaping
Option B:	Area-sampling
Option C:	Pixel Phasing
Option D:	Super-sampling
2.	Random (vector) scan display uses to store the picture/image information and they are mainly used for applications like
Option A:	Bitmap file, Color drawing application
Option B:	Data file, pixel drawing application
Option C:	Frame buffer, image drawing application
Option D:	Display file, line drawing application
3.	Reflection of a point about x-axis ,followed by a counter-clockwise rotation of 90° is equivalent to reflection about the line
Option A:	X = - Y
Option B:	Y = - X
Option C:	X = Y
Option D:	X+Y=1

4.	By applying properties of computations are reduced in Scan Line Polygon Fill Algorithm.
Option A:	Relativity
Option B:	Coherence
Option C:	Reference
Option D:	Symmetry
5.	A picture is stored in the computer's memory in
Option A:	PDCS
Option B:	WCS
Option C:	NDC
Option D:	WDS
6.	Which curve can be controlled locally?
Option A:	B-Spline
Option B:	Bezier curve
Option C:	Helmite curve
Option D:	Bezier Surface
7.	The projection in which the projection plane is allowed to intersect the x, y and z-axes at equal distances.
Option A:	Wire frame model
Option B:	Constructive solid geometry methods
Option C:	Isometric projection
Option D:	Back face removal
8.	The process of representing continuous graphics object as a collection of discrete pixels is called:
Option A:	Rasterization
Option B:	Scan conversion
Option C:	Rendering

Option D:	Discretization
9.	Shear transformations can be expressed in terms of
Option A:	Rotation only
Option B:	Reflection only
Option C:	Scaling only
Option D:	Product of scaling and rotation
10.	If we rasterize a line segment AB with A(-3,3) and B(4,-4) using DDA line algorithm, which are the points that will lie on the line segment?
Option A:	(-3,3), (-3,2), (-2,1), (1,0), (1,-1), (2,-2), (3,-3), (4,-4)
Option B:	(-3,3), (-2,2), (-1,1), (1,1), (1,-1), (2,-2), (3,-3), (4,-4)
Option C:	(-3,3), (-2,2), (-1,1), (0,0), (1,-1), (2,-2), (3,-3), (4,-4)
Option D:	(-3,3), (-2,2), (-1,1), (1,0), (1,-1), (2,-2), (3,-3), (4,-4)
11.	The scale factor of view-port transformation for x co-ordinate is
Option A:	Sx = (xvmax – xvmin)/ (xwmax – xwmin)
Option B:	Sx = (xvmax - xvmin)/(xwmax + xwmin)
Option C:	Sx = (xvmin - xvmax)/(xwmax - xwmin)
Option D:	Sx = (xvmax + xvmin)/ (xwmax - xwmin)
12.	are the three dimensional analogs of quad trees.
Option A:	Quadric
Option B:	Octrees
Option C:	Geometry
Option D:	Wireframe models

13.	Painter's algorithm is also called as:
Option A:	Wornock algorithm
Option B:	Area subdivision algorithm
Option C:	Z-buffer algorithm
Option D:	Depth-sort algorithm
14.	Given a circle with radius of 6-units centered at (10,15), the following are the points that will lie on the 1/8th part of the circle:
Option A:	(10,21), (11,21), (12,21), (13,20), (14,19)
Option B:	(0,6), (1,6), (2,6), (3,5), (4,4)
Option C:	(0,6), (1,6), (2,5), (3,5), (4,4)
Option D:	(10,21), (11,21), (12,20), (13,20), (14,19)
15.	Back face detection is:
Option A:	Object space method
Option B:	Image space method
Option C:	Coordinate space method
Option D:	Geometry space method
16.	A triangle ABC with coordinates A(4,3), B(1,1) and C(7,1) is translated by 3- units in x-direction and 2-units in y-direction, followed by anticlockwise rotation of the triangle by 90 degrees. The resulted triangle is further scaled to double in x- direction without any scaling in y-direction. What will be the resultant position of the triangle?
Option A:	A'(-10,7), B'(-6,4), C'(-6,-10)
Option B:	A'(-10,7), B'(-6,-4), C'(-6,10)
Option C:	A'(-10,-7), B'(-6,4), C'(-6,10)
Option D:	A'(-10,7), B'(-6,4), C'(-6,10)
17.	The phenomenon of apparent increase in the number of available intensities by considering combine intensity of multiple pixels is known as
Option A:	Dithering

Option B:	Half toning
Option C:	Printing
Option D:	Scanning
18.	is used to calculate the intensity of light that is reflected at a given point on surface.
Option A:	Illumination model
Option B:	Rendering model
Option C:	Diffusion model
Option D:	Warn model
19.	In Liang-Barsky line clipping algorithm, if pk=0 and qk>=0, then
Option A:	line is parallel to any one clipping boundary and is completely inside the clipping boundary.
Option B:	line is parallel to any one clipping boundary and is completely outside the clipping boundary.
Option C:	The line is an entering line (outside to inside).
Option D:	The line is exiting line (inside to outside).
20.	Construct the Bezier curve of order-3 with the polygon vertices $A(0,0)$, $B(1,2)$, $C(3,2)$, and $D(2,0)$. Generate at least 5 points on the curve. (Consider t=0.15,0.35,0.5,0.65,0.85)
Option A:	(0.50,0.76), (1.24,1.36), (1.75,1.5), (2.12,1.36), (2.14,0.76)
Option B:	(0.60,0.76), (1.4,1.36), (1.75,1.5), (2.12,1.36), (2.14,0.76)
Option C:	(0.50,0.76), (1.24,1.36), (2.75,1.5), (2.12,2.36), (2.14,0.76)
Option D:	(0.50,0.96), (1.24,1.36), (1.75,1.5), (2.12,1.36), (2.14,0.76)

Q2.	
А	Solve any Two5 marks each
i.	If an ellipse with x-radius of 4-units and y-radius of 3-units is rasterized using mid-point ellipse algorithm, find the points that lie on the ellipse in the first quadrant.

ii.	Explain Depth buffer algorithm.
iii.	Write a short note on sweep representations.
В	Solve any One10 marks each
i.	Triangle PQR has vertices as $P(4,3)$, $Q(6,5)$ and $R(5,7)$. It is Desired to reflect through an arbitrary line L whose equation is $y = x + 3$. Calculate the new vertices of triangle.
ii.	Explain any one polygon clipping algorithm in detail.

Q3.	
A	Solve any Two 5 marks each
i.	Given a circle with radius of 6-units centered at $(10,15)$, Find the points that will lie on the 1/8th part of the circle.
ii.	Write a short note on fractals.
iii.	Explain any one shading techniques in detail.
В	Solve any One10 marks each
i.	Find the clipping co-ordinates to clip the line segment AB against the window using any one line clipping algorithm $A(5,12)$, $B(70,50)$ and the window co-ordinates are lower left corner of the window is (10,10) and upper right corner is (60,60).
ii.	Explain 3D clipping in detail.

University of Mumbai Examination June 2021

Examinations Commencing from 1st June 2021 Program: **Computer Engineering** Curriculum Scheme: **Rev2016** Examination: **SE Semester IV**

Course Code: CSC404 and Course Name: Computer Graphics

Time: 2 hour

Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	D
Q3.	С
Q4	В
Q5	В
Q6	А
Q7	С
Q8.	В
Q9.	D
Q10.	С
Q11.	А
Q12.	В
Q13.	D
Q14.	А
Q15.	А
Q16.	D
Q17.	В
Q18.	А
Q19.	А
Q20.	А

Answer Key for Subjective Questions:

Q.2 A)

i) Ans: (0,3), (1,3), (2,3), (3,2), (4,1), (4,0) ---5Mks

ii) Explanation of Depth buffer algorithm --- 2 Mks

Algorithm -- 2 Mks

Adv & Dis adv -- 1 Mks

iii) Sweep representations:-

Translational sweep ---- 2.5 Mks

Rotational sweep ---- 2.5 Mks

Q.2 B)

i) Ans: Ans: P'(0,7), Q'(2,9), R'(4,8)

ii)Sutherland Hodgeman / Weiler Artherton Polygon clipping

Explanation of algo and steps of algo -- 5 Mks

Example of algo working --- 5 Mks

Q.3 A)

i) Ans: (10,21), (11,21), (12,21), (13,20), (14,19) --- 5 Mks (1 Mks for each point)

ii) Explanation of fractal and their uses/ application : 2 Mks

Examples of fractal : Koch curve / Hilbert's Curve ---- 3 Mks

iii) Explanation of Gouraud / Phong shading with proper diagram-----3Mks

Merits --- 1Mks Demerits --- 1Mks

Q.3 B)

i) Ans: A'(10,15.33) and B'(60,48.66)

ii) Explanation of 3D clipping : defining region codes for all regions, clipping process, algorithm steps ----- 5 Mks

Algorithm steps with suitable examples--- 3 Mks

Merits and Demerits --- 2 Mks

University of Mumbai Examination June 2021

Examinations Commencing from 1st June 2021

Program: Computer Engineering Curriculum Scheme: Rev2016 Examination: BE Semester IV

Course Code: CSC405 and Course Name: Operating System

Time: 2 hour

Max. Marks: 80

Q1.	A program is called as
Option A:	Active
Option B:	Passive
Option C:	Running
Option D:	Dead
Q2.	Which of following is not the function of the Kernel?
Option A:	Process Management
Option B:	Memory Management
Option C:	Device Management
Option D:	Program Compilation
Q3.	A Binary semaphore is restricted to values of
Option A:	0 or 1
Option B:	1 or 2
Option C:	-1 or +1
Option D:	0 or -1
Q4.	What is a shell script?
Option A:	Group of commands
Option B:	A file containing special symbols
Option C:	A file containing a series of commands
Option D:	Group of functions
Q5.	

	Process Arrival Time Execute Time Service Time
	P0 0 5 0 P1 1 3 5
	P2 2 8 8
	P3 3 6 16
	D0 D1 D2 D2
	0 5 8 16 22
	Consider above processes to be executed on first come, first serve basis. It is a non-
	preemptive. What the waiting time of P2?
Option A:	6
Option B:	8
Option C:	16
Option D:	0
Q6.	If the time quantum is made very large for a Round Robin (RR) scheduler, then
	which one of the following assertions would be true?
Option A:	The scheduling algorithm degenerates to the First Come First Served (FCFS)
	algorithm
Option B:	More context switches occur.
Option C:	The average turnaround time decreases
Option D:	The scheduling algorithm degenerates to the Shortest Job Next (SJN) algorithm
07	The Drimony distinction between Short term scheduler and Long term scheduler is
Q/.	The Longth of their queues
Option B:	The type of process they schedule
Option C:	The frequency of their execution
Option D:	The device for which the schedule the process
Option D.	The device for which the schedule the process
08.	Determine the number of page faults when references to pages occur in the
	following order: 1, 2, 4, 5, 2, 1, 2, 4. Assume that the main memory can
	accommodate 3 pages and the main memory already has the pages 1 and 2, with
	page 1 having been brought earlier than page 2. (LRU algorithm is used)
Option A:	3
Option B:	5
Option C:	4
Option D:	1
Q9.	Disk requests are received by a disk drive for cylinders 5, 25, 18, 3, 39, 8 and 35 in
	this order. A seek takes 7ms per cylinder moved. How much seek time is needed
	to server these requests for a Shortest Seek First (SSF) Algorithm? Assume that
	arm cylinder is at 20 when the last of these requests are made with one of the request
	yet served
Option A:	125ms
Option B:	413ms

Option C:	368ms
Option D:	750ms
•	
Q10.	A counting semaphore was initialized to 13. Then 10 P (wait) operations and 4V
	(signal) operations were completed on this semaphore. The resulting value of the
	semaphore is
Option A:	10
Option B:	8
Option C:	7
Option D:	16
_	
Q11.	In Dinning Philosopher Problem, deadlock can occur
Option A:	If all philosophers pick their left chopstick simultaneously and wait for the other
-	chopstick to be available
Option B:	If all philosophers pick up both the sticks
Option C:	If no philosopher picks up sticks
Option D:	If only two philosophers pick up two sticks
_	
Q12.	Three processes having burst time of 3, 10 and 7 time units each arrive
	simultaneously at time 0. Using non-preemptive SJF scheduling, their total waiting
	time is
Option A:	4
Option B:	3
Option C:	20
Option D:	10
Q13.	Consider a disk where blocks 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26 and
	27 are free and the rest of the blocks are allocated. Then the free space bitmap
	would be
Option A:	10000110000001110011111100011111
Option B:	110000110000001110011111100011111
Option C:	01111001111110001100000011100000
Option D:	11111001111110001100000011100000
Q14.	Which of following two atomic operations semaphore uses for process
	synchronization.
Option A:	Wait , Signal
Option B:	add, del
Option C:	W,X
Option D:	not wait, not signal
Q15.	In segmentation, each address is specified by
Option A:	An offset & value
Option B:	A value & segment number
Option C:	A key & value
Option D:	A segment number & offset
Q16.	Working set model for page replacement is based on the assumption of
Option A:	Modularity

Option B:	Locality
Option C:	Globalization
Option D:	Random access
Q17.	Thrashing occurs when
Option A:	When a page fault occurs
Option B:	Processes on system frequently access pages not memory
Option C:	Processes on system are in running state
Option D:	Processes on system are in waiting state
Q18.	Which statement is true for indexed file allocation method?
Option A:	Each file must occupy a set of contiguous blocks on the disk
Option B:	All the pointers to scattered blocks are placed together in one location
Option C:	All pointer are NULL
Option D:	Entire file is stored in one block
Q19.	Which of following is responsible for all file I/O initiation and termination.
Option A:	Device drivers
Option B:	Physical I/O
Option C:	Basic I/O supervisor
Option D:	Logical I/O
Q20.	A Translation look aside buffer can be used to
Option A:	To reduce the time taken to access the page table again and again.
Option B:	To increase the time taken to access the page table again and again.
Option C:	To equalize the time taken to access the page table again and again.
Option D:	To moderate the time taken to access the page table again and again.

Q2	
Α	Solve any Two 5 marks each
i.	Describe the Producer and Consumer synchronization problems.
ii.	Explain the difference between preemptive and non-preemptive scheduling.
iii.	Write about Banker's Algorithm for Single & Multiple Resources to avoid
	deadlock.
В	Solve any One 10 marks each
i.	Assume you have the following jobs to execute with one processor, with the
	jobs arriving in the order listed here:
	i T(pi)
	0 80
	1 20
	2 10
	3 20
	4 50
	a. Suppose a system uses FCFS scheduling .Create a Gantt chart illustrating
	the execution of these processes?
	b. What is the turnaround time for process p3?
	c. What is the average wait time for the processes?

ii.	A system uses 3 page frames for storing process pages in main memory. It
	uses the First in First out (FIFO) page replacement policy. Assume that all
	the page frames are initially empty. What is the total number of page faults
	that will occur while processing the page reference string given below-
	4, 7, 6, 1, 7, 6, 1, 2, 7, 2
	Also calculate the hit ratio and miss ratio.

Q3.	Solve any Four out of Six	5 marks each
А	Describe Inter process communication (IPC) in brief.	
D	Define and describe the Memory Allocation Strategies Best-H	Fit, First Fit, and
D	Worst Fit & Next Fit.	
С	List the various functions of operating system and describe a	any one in brief.
D	Differentiate between paging and segmentation.	
E	List the different accessing methods of a file and describe an	y one in detail.
F	Compare the various Disk-Scheduling algorithms.	

Examination June 2021

Examinations Commencing from 1st June 2021

Program: Computer Engineering Curriculum Scheme: Rev2016 Examination: BE Semester IV

Course Code: CSC405 and Course Name: Operating System

Time: 2 hour

Max. Marks: 80

Question	Correct Option (Enter either 'A' or 'B'
Number	or 'C' or 'D')
Q1.	В
Q2.	D
Q3.	А
Q4	С
Q5	А
Q6	А
Q7	С
Q8.	С
Q9.	В
Q10.	С
Q11.	А
Q12.	D
Q13.	D
Q14.	А
Q15.	D
Q16.	В
Q17.	В
Q18.	В
Q19	С
Q20	А

Q2	
Α	Solve any Two 5 marks each
i.	Describe the Producer and Consumer synchronization problems . Ans : Probable points in answer should be
	The producer consumer problem is a synchronization problem. There is a fixed size buffer and the producer produces items and enters them into the buffer. The consumer removes the items from the buffer and consumes them. A producer should not produce items into the buffer when the consumer is consuming an item from the buffer and vice versa. So the buffer should only be accessed by the producer or consumer at a time. The producer consumer problem can be resolved using semaphores.
ii.	Explain the difference between preemptive and non-preemptive scheduling. Ans : Preemptive scheduling allows a process to be interrupted in the midst of its execution, taking the CPU away and allocating it to another process. Non preemptive scheduling ensures that a process relinquishes control of the CPU only when it finishes with its current CPU burst.
iii.	 Write about Banker's Algorithm for Single & Multiple Resources to avoid deadlock. Ans: Probable points in answer should be The Banker's algorithm is a resource allocation and deadlock avoidance algorithm that tests for safety by simulating the allocation for predetermined maximum possible amounts of all resources, then makes an "s-state" check to test for possible activities, before deciding whether allocation should be allowed to continue.
R	Solve any One 10 marks each
i.	Assume you have the following jobs to execute with one processor, with the jobs arriving in the order listed here: i T(pi) 0 80 1 20 2 10 3 20 4 50 a. Suppose a system uses FCFS scheduling .Create a Gantt chart illustrating the execution of these processes? b. What is the turnaround time for process p3? c. What is the average wait time for the processes? Ans: a. The Gantt chart: 0 -80 -100 -110 -130 -180 b. The turnaround time for process p3 is T.A. (p3) = T (p3) + T.A. (p2) = T (p3) + (T (p2) + T.A. (p1)) = T (p3) + (T (p2) + (T (p1) + T.A. (p0))) = T (p3) + (T (p2) + (T (p1) + T.A. (p0))) = 20 + 10 + 20 + 80 = 130.

	c. Average waiting time calculation: Waiting Time for process $p_1 = 0$ sec. $p_2 = 100$ sec. $p_3 = 110$ sec.
	p4 = 130 sec., $p3 = 110 sec.$, $p4 = 130 sec.$
	The average waiting time = $(0+80+100+110+130)/5 = 84$ sec
ii.	A system uses 3 page frames for storing process pages in main memory. It uses the First in First out (FIFO) page replacement policy. Assume that all the page frames are initially empty. What is the total number of page faults that will occur while processing the page reference string given below- 4, 7, 6, 1, 7, 6, 1, 2, 7, 2 Also calculate the hit ratio and miss ratio.
	Ans:
	Total number of references $= 10$
	Total number of page faults occurred $= 6$
	Hit ratio-
	Total number of page hits
	= Total number of references – Total number of page misses or page faults
	= 10 - 6
	= 4
	Hit ratio
	= Total number of page hits / Total number of references
	= 4 / 10
	= 0.4 or 40%
	Miss ratio-
	Total number of page misses or page faults $= 6$
	Miss ratio
	= Total number of page misses / Total number of references
	= 6 / 10
	= 0.6 or 60%

Q3.	Solve any Four out of Six	5 marks each

	Describe Inter process communication (IPC) in brief.
A	Ans: Probable answer should be Interposes communication is the mechanism provided by the operating system that allows processes to communicate with each other. This communication could involve a process letting another process know that some event has occurred or the transferring of data from one process to another
В	Define and describe the Memory Allocation Strategies Best-Fit, First Fit, and Worst Fit & Next Fit. Ans: Probable points in answer should be In the first fit approach is to allocate the first free partition or hole large enough which can accommodate the process. It finishes after finding the first suitable free partition. The best fit deals with allocating the smallest free partition which meets the requirement of the requesting process
	List the various functions of operating system and describe any one in brief.
С	Ans : An operating system has three main functions: (1) manage the computer's resources, such as the central processing unit, memory, disk drives, and printers, (2) establish a user interface, and (3) execute and provide services for applications software.
	Differentiate between paging and segmentation.
	Ans: Paging in operating systems, is a memory management scheme, operating system retrieves data from secondary storage in same-size blocks referred to as pages. Paging is to divide each process in the form of pages. The main memory will also be divided in the form of frames and therefore one page of the process is to be stored in one frames of the memory. Paging decreases the efficiency of the system as it can divide the same function into different pages which may or may not be loaded into memory at the same time.
	Segmentation on the other hand is a memory management technique in which the
D	memory is divided into the variable size parts. Each part is then referred to as segment that means, it can be allocated to a process. Though paging is more close to operating system rather than the user because it divides all the processes into the form of pages, segmentation is far better because it divides the process into segments whereby each segment constitutes same type of functions such as main function being in one segment and library function being in the other segment
<u> </u>	List the different accessing methods of a file and describe any one in detail.
Е	Ans: Probable points in answer should be Direct Access, Indexed access, Sequential Access

	Sequential Access: This is the most common method. Here the information present in the file is accessed in a sequential fashion, one record after the other
	Compare the various Disk-Scheduling algorithms.
F	Ans: Comparison of scheduling algorithms
	FCFS
	SJF
	RR
	SRTN
	Multilevel Feedback
	Etc. along with their performance parameters