K. J. Somaiya Institute of Engineering and Information Technology Sion, Mumbai - 400022
 NAAC Accredited Institute with ' A ' Grade
 NBA Accredited 3 Programs (Computer Engineering, Electronics \& Telecommunication Engineering and Electronics Engineering) Permanently Affiliated to University of Mumbai

EXAMINATION TIME TABLE (June 2021)

T.E.(ELECTRONICS)(Sem VI)(REV. -2016)(Choice Based)

Days and Dates	Time	Course Code	Paper
Wednesday, June 02, 2021	11.30 a.m. to 1.30 p.m.	ELX601	Embedded System and RTOS
Friday, June 04, 2021	11.30 a.m. to 1.30 p.m.	ELX 602	Computer Communication Network
Monday, June 07, 2021	11.30 a.m. to 1.30 p.m.	ELX 603	VLSI Design
Wednesday, June 09, 2021	11.30 a.m. to 1.30 p.m.	ELX 604	Signals and systems
Friday, June 11, 2021	11.30 a.m. to 1.30 p.m.	ELXDLO6021	Department Level Optional courses II:- Microwave Engineering
Friday, June 11, 2021	11.30 a.m. to 1.30 p.m.	ELXDLO6022	Electronics Product Design
Friday, June 11, 2021	11.30 a.m. to 1.30 p.m.	ELXDLO6023	Wireless Communication
Friday, June 11, 2021	11.30 a.m. to 1.30 p.m.	ELXDLO6024	Computer Organization and Architecture

Change if any, in the time table shall be communicated on the college web site.

Mumbai
Wednesday,May 12, 2021

Principal

University of Mumbai

Examination 2021 under Cluster 06
(Lead College: Vidyavardhini's College of Engg Tech)
Examinations Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016
Examination: TE
Semester VI
Course Code: ELX601 and Course Name: Embedded Systems and Real Time Operating System Time: 2 hour

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
	circuit prevents the processor/controller from unexpected program
1.	execution behavior when the supply voltage to the processor/controller falls below a specified voltage.
Option A:	Reset
Option B:	Brown out protection
Option C:	Watchdog
Option D:	Programmable Peripheral Interface
	A device that is attached to a computer.
2.	In Black Box Testing, the tester_-_
Option A:	device disk
Option B:	ISR
Option C:	device driver
Option D:	IPC
3.	

Option C:	Testing
Option D:	Debugging
6.	$\ldots \ldots$ is a timing device that resets the system after a predefined timeout
Option A:	Real time clock
Option B:	Reset circuit
Option C:	Watchdog timer
Option D:	Power down mode
7.	\qquad is fast in operation due to its resistive networking and switching capabilities
Option A:	NVRAM
Option B:	DRAM
Option C:	SRAM
Option D:	RAM
8.	\qquad is a term used to describe a situation when a higher priority task cannot execute because it is waiting for a low priority task to complete.
Option A:	IPC
Option B:	Priority Inheritance Protocol
Option C:	Priority Inversion
Option D:	Priority Ceiling
9.	The two common kinds of semaphores are
Option A:	Binary and Counting
Option B:	Primary and Secondary
Option C:	Signal and Pipe
Option D:	Single and Mailbox
10.	\ldots ___ is used to acquire semaphore in uCOS-II.
Option A:	OSSemPost()
Option B:	OSSemphore ()
Option C:	OSSemAcq ()
Option D:	OSSemPend()
11.	The fundamental building blocks of UML are
Option A:	Structure and behaviour
Option B:	Things, relationships and diagrams
Option C:	Objects and classes
Option D:	Use case and sequence diagrams
12.	Which of the following is one-time programmable memory?
Option A:	SRAM
Option B:	PROM
Option C:	FLASH
Option D:	NVRAM

13.	Which of the following are the three measures of information security in embedded systems?
Option A:	Confidentiality, secrecy, integrity
Option B:	Confidentiality, integrity, availability
Option C:	Confidentiality, transparency, availability
Option D:	Integrity, transparency, availability
14.	A situation where none of the processes are able to make any progress in their execution is termed as
Option A:	Deadlock
Option B:	Livelock
Option C:	Starvation
Option D:	Racing
15.	The state where a process is incepted into the memory and awaiting the processor time for execution is known as
Option A:	Ready State
Option B:	Blocked State
Option C:	Waiting State
Option D:	Created State
16.	The ability of an operating system to hold multiple process in memory and switch the processor (CPU) from executing one process to another process is called
Option A:	Multitasking
Option B:	Multiprocessing
Option C:	Multiprogramming
Option D:	Multithreading
17.	\qquad is a sleep and wakeup based mutual exclusion implementation for shared resource access
Option A:	Mutex
Option B:	Remote Procedure call
Option C:	Semaphore
Option D:	Racing
18.	Which is the function call used by an ISR to indicate the occurrence of an interrupt to the MicroC/OS-II Kernel
Option A:	Interrupt
Option B:	OSIntEnter
Option C:	OSIntExit
Option D:	OSIdle
19.	RS 232 is not suitable for ___ communications.
Option A:	Point to Point
Option B:	Multi Drop
Option C:	2 Wire communication
Option D:	Mesh network

20.	is not a task type.
Option A:	Periodic
Option B:	Sporadic
Option C:	Priority Inversion
Option D:	Aperiodic

$\mathbf{2}$ (20 Marks)	Solve any Two Questions out of Three 10 marks each
A	What is the role of sensor and transducer in Embedded System design? Illustrate with an example.
B	Explain the different types of UML diagram and their significance in each stage of the system development life cycle.
C	Explain Rate Monotic Scheduling Algorithm; State its advantages and disadvantages.

Q Q3. (20 Marks)	Solve any Two Questions out of Three
A	Design a Car Cruise-control using uCOS II RTOS. Support the design with requirements, hardware and software architecture.
B	Write a short not on: Hardware-Software Co-design
C	What are the different types of Inter-process communication? Explain any two in detail.

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examination Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016
Examination: TE Semester VI
Course Code: ELX601 and Course Name: Embedded Systems and RTOS
Time: 2 hour
Max. Marks: 80
Q1:

Question Number	Correct Option (Enter either 'A' or ' \mathbf{B} or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	B
Q2.	C
Q3.	A
Q4	A
Q5	D
Q6	C
Q7	C
Q8.	C
Q9.	A
Q10.	D
Q11.	D
Q12.	B
Q13.	A
Q14.	A
Q15.	A
Q16.	C
Q17.	B
Q18.	B
Q19.	C
Q20.	

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examinations Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016
Examination: TE Semester VI
Course Code:ELX602 and Course Name: Computer Communication and Networks
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	We add r redundant bits to each block to make the length $\mathrm{n}=\mathrm{k}+\mathrm{r}$. The resulting n -bit blocks are called
Option A:	Blockword
Option B:	Dataword
Option C:	Code word
Option D:	Word
2.	Which error detection method uses one's complement arithmetic?
Option A:	Simple parity check
Option B:	CRC
Option C:	Two-dimensional parity check
Option D:	Checksum
3.	Automatic repeat request error management mechanism is provided by __
Option A:	logical link control sublayer
Option B:	media access control sublayer
Option C:	network interface control sublayer
Option D:	application access control sublayer
4	In PURE ALOHA, vulnerable time is __rame transmission time.
Option A:	the same as
Option B:	two times
Option C:	three times
Option D:	four times
5.	Devices in a ring or mesh topology are usually configured in a _ relationship
Option A:	Peer to peer
Option B:	Point to Point
Option C:	primary to secondary
Option D:	Master \& slave
6.	In a mesh topology with n devices, if a new device is added, are needed. Option A:

Option B:	n -1
Option C:	$\mathrm{n}+1$
Option D:	2n
7.	A device that helps prevent congestion and data collisions is
Option A:	Switch
Option B:	Hub
Option C:	Gateway
Option D:	Proxy Server
8.	In the Ethernet frame, the ___ field contains error detection information.
Option A:	Address
Option B:	Preamble
Option C:	CRC
Option D:	Type
9.	In the Ethernet, the \qquad field is actually added at the physical layer and is not (formally) the part of the frame.
Option A:	address
Option B:	CRC
Option C:	Preamble
Option D:	Type of protocol
10.	The MAC (Media Access Control) address of the network card is used in both Ethernet and Token-Ring networks and is essential for communication. What does MAC provide?
Option A:	An alias for the computer name.
Option B:	The logical domain address for the workstation.
Option C:	A physical address that is assigned by the manufacturer.
Option D:	A physical address that is randomly assigned each time the computer is started.
11.	An address in a block is 180.8 .17 .9 . Find the first address and last address in the block.
Option A:	180.8.0.0 and 180.8.255.255
Option B:	180.8.1.0 and 180.8.255.0
Option C:	180.8.1.1 and 180.8.255.255
Option D:	180.8.0.0 and 180.8.1.1
12.	Prefix length in classless addressing can be
Option A:	1 to16
Option B:	1 to 32
Option C:	1 to 24
Option D:	1 to 8
13.	What is the SUBNET mask for a class C Network?
Option A:	255.0.0.0
Option B:	255.255.255.0
Option C:	255.255.0.0

Option D:	255.255.255.255
14.	Which of the following is the Protocol of Application layer ?
Option A:	TCP
Option B:	UDP
Option C:	SCTP
Option D:	DNS
15.	To deliver a message to the correct application program running on a host, the \qquad address must be consulted.
Option A:	IP
Option B:	MAC
Option C:	Port
Option D:	Physical
16.	What is the hexadecimal equivalent of the Ethernet address 0101101000010001 01010101000110001011101011111111 ?
Option A:	5A:88:AA:18:55:F0
Option B:	5A:81:BA:81:AA:0F
Option C:	5A:18:5A:18:55:0F
Option D:	5A:11:55:18:BA:FF
17.	User datagram protocol is called connectionless because
Option A:	all UDP packets are treated independently by transport layer
Option B:	it sends data as a stream of related packets
Option C:	it is received in the same order as sent order
Option D:	it sends data very quickly
18.	Which connector does the STP cable use?
Option A:	BNC
Option B:	RJ-11
Option C:	RJ-45
Option D:	RJ-69
19.	The default connection type used by HTTP is
Option A:	Persistent
Option B:	Non-persistent
Option C:	Can be either persistent or non-persistent depending on connection request
Option D:	reference request
20.	Simple mail transfer protocol (SMTP) utilizes \qquad as the transport layer protocol for electronic mail transfer.
Option A:	TCP
Option B:	UDP
Option C:	IP
Option D:	SCTP

Q.2	Solve any Two Questions out of Three. (10 marks each)
A	What are the functions of layers in the OSI model?
B	Classify the various multiple access methods and explain CSMA-CD in detail.
C	What is traffic shaping? Explain leaky bucket technique and Token Bucket technique of traffic shaping.

Q. 3	Solve any Two Questions out of Three. (10 marks each)
A	Define the utilization or efficiency of the line and derive the expression for stop and wait flow control. Calculate the maximum link utilization for following cases: i) stop and wait flow control ii) Sliding window flow control with window sizes of 4 \& 7 Link specification: Frame length $=5000$ bits/frame Velocity of propagation $=2 \times 10^{\wedge} 8 \mathrm{~m} / \mathrm{s}$, Link distance $=30 \mathrm{~km}$, Data rate $=50 \mathrm{Mbps}$
B	Using Dijkstra's shortest path algorithm, find the shortest path
C	An organization is granted a block of addresses with the beginning address $14.24 .74 .0 / 24$. The organization needs to have 3 subblocks of addresses to use in its three subnets as shown below: - One subblock of 120 addresses. - One subblock of 60 addresses. - One subblock of 10 addresses From above information, design the subnetworks and find the information about each network.

University of Mumbai
Examination 2021 under Cluster 06
(Lead College: Vidyavardhini's College of Engg Tech)
Examinations Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016
Examination: TE Semester VI
Course Code:ELX602 and Course Name: Computer Communication and Networks
Time: 2 hour
Max. Marks: 80

Q1:

Question Number	Correct Option Enter either ' \mathbf{A}^{\prime} or ${ }^{\prime}$ ' \mathbf{B}^{\prime} or ' \mathbf{C}^{\prime} or ' \mathbf{D} '')
Q1.	C
Q2.	A
Q3.	A
Q4	B
Q5	A
Q6	B
Q7	A
Q8.	C
Q9.	C
Q10.	C
Q11.	A
Q12.	B
Q13.	B
Q14.	D
Q15.	C
Q16.	D
Q17.	A
Q18.	C
Q19.	A
Q20.	A

Important steps and final answer for the questions involving numerical example

Q2(A): What are the functions of layers in the OSI model?

The 7 Layers of OSI

Q.2(B): Classify the various multiple access methods and explain CSMA-CD in detail.

Flow diagram for the CSMA/CD is as follows:

Q.3.(A)

Q.3.(B)

Q.3(C)

There are $2^{32-24}=256$ addresses in this block. The first address is $14.24 .74 .0 / 24$; the last address is 14.24.74.255/24.
a. The number of addresses in the first subblock is not a power of 2 . We allocate 128 addresses. The subnet mask is 25 . The first address is $14.24 .74 .0 / 25$; the last address is 14.24.74.127/25.
b. The number of addresses in the second subblock is not a power of 2 either. We allocate 64 addresses. The subnet mask is 26 . The first address in this block is 14.24.74.128/26; the last address is 14.24.74.191/26.
c. The number of addresses in the third subblock is not a power of 2 either. We allocate 16 addresses. The subnet mask is 28 . The first address in this block is 14.24.74.192/28; the last address is 14.24.74.207/28.
d. If we add all addresses in the previous subblocks, the result is 208 addresses, which means 48 addresses are left in reserve. The first address in this range is 14.24.74.209. The last address is 14.24.74.255.

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016
Examination: TE Semester VI
Course Code: ELX603
Time: 2 hour
Course Name:VLSI Design
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The CMOS logic circuit for NOR gate is:
Option A:	
Option B:	
Option C:	

Option D:	
2.	In Pseudo-nMOS inverter logic, the gate of pmos transistor operates is: -
Option A:	Connected to VDD
Option B:	grounded
Option C:	Connected to gate of nmos transistor
Option D:	Kept floated
3.	(-A indicates complement of A and -B indicates complement of B) Above Circuit is
Option A:	XNOR
Option B:	XOR
Option C:	AND
Option D:	OR
4.	Sense amplifiers are primarily used in: -
Option A:	Memory circuits
Option B:	Adder Circuits
Option C:	Manchester carry chain adders
Option D:	Operational Amplifier
5.	In 6 T SRAM Cell the core is made up of how many inverters
Option A:	4
Option B:	2
Option C:	5
Option D:	6
6.	The capacitance used in 1 T DRAM cell is: -
Option A:	Normal Electrolytic Capacitor
Option B:	Diffusion Capacitance
Option C:	MOSFET capacitance
Option D:	Trench Capacitance
7.	When a CMOS inverter withdraws maximum current from the supply, the two transistors are in \qquad region.
Option A:	saturation
Option B:	linear
Option C:	non saturation

Option D:	cut-off
8.	The Manchester Carry-Chain Adder is having a part of \qquad transistors that are used to implement the carry chain.
Option A:	PASS
Option B:	PNP
Option C:	NPN
Option D:	BJT
9.	For the body effect to occur in a MOSFET, substrate is biased with respect to
Option A:	Gate
Option B:	Drain
Option C:	Source
Option D:	Body
10.	Ids is ___ to length L of the channel.
Option A:	Square law
Option B:	Logarithmically
Option C:	Directly Proportional
Option D:	Inversely Proportional
11.	The circuit shows two pass transistors in series. Find the value of Y ?
Option A:	$\mathrm{Y}=\mathrm{A} . \mathrm{B}$
Option B:	$\mathrm{Y}=\mathrm{A}+\mathrm{B}$
Option C:	$\mathrm{Y}=\mathrm{A} . \mathrm{A}$
Option D:	$\mathrm{Y}=\mathrm{B} . \mathrm{B}$
12.	ESD phenomenon stands for
Option A:	Electron Source Detection
Option B:	Electron Static Discharge
Option C:	Electrostatic Discharge
Option D:	Discharged Capacitor
13.	The device in which NMOS and PMOS pair wired in parallel with their sources connected and drains connected is called as
Option A:	Transmission Gate
Option B:	CMOS inverter
Option C:	Pseudo NMOS inverter
Option D:	Manchester circuit
14.	H-tree Distribution to all chip level circuits is used to avoid following error: -
Option A:	Clock skew
Option B:	Clock jitter
Option C:	Charge sharing

Option D:	Charge leakage
15.	Charge Sharing and Charge Leakage Problem in Domino cascade circuits can be removed by
Option A:	Dynamic Circuit
Option B:	Single FET charge keeper circuit.
Option C:	Static CMOS Circuit
Option D:	Clocked CMOS circuits.
16.	The refresh frequency in DRAM cell is
Option A:	$\mathrm{f}_{\text {refresh }}=1 / 2 \mathrm{t}_{\mathrm{h}}$
Option B:	$\mathrm{f}_{\text {refresh }}=1 / 3 \mathrm{t}_{\mathrm{h}}$
Option C:	$\mathrm{f}_{\text {refresh }}=1 / \mathrm{th}_{\mathrm{h}}$
Option D:	$\mathrm{f}_{\text {refresh }}=1 / 4 \mathrm{th}_{\mathrm{h}}$
17.	For the above circuit vi is the input voltage, vout is the output voltage of the circuit. By Elmore's formula find out the time constant of the circuit.
Option A:	$\mathrm{R}_{2} \mathrm{C}_{2}$
Option B:	$3 \mathrm{R}_{2} \mathrm{C}_{2}$
Option C:	$4 \mathrm{R}_{2} \mathrm{C}_{2}$
Option D:	$2 \mathrm{R}_{2} \mathrm{C}_{2}$
18.	When $\mathrm{Kn}>\mathrm{Kp}$, Threshold voltage of CMOS Inverter move closer to
Option A:	Zero
Option B:	Infinity
Option C:	Midpoint Value
Option D:	Supply Voltage
19.	In Integrated Chips circuits are connected to each other mostly by: -
Option A:	connection
Option B:	Interconnect
Option C:	wires
Option D:	PCB
20.	Find the name of below dia

Option A:	ROM Memory
Option B:	RAM Memory
Option C:	Barrel Shifter
Option D:	NAND ROM Memory

subjective/descriptive questions

Q2 (20 Marks)	Solve any Four out of Six 5 marks each
A	What is Scaling in VLSI Technology? List the types of scaling and explain any one in detail.
B	Explain CMOS inverter characteristics mentioning it's all regions of operation.
C	Implement Z $=(\overline{\text { A+B+C) DE using CMOS static circuit. }}$
D	Draw Schematic of 6T SRAM Cell and Explain it's working
E	Compare pass transistor and transmission gate, list two advantages of transmission gate.
F	Write short note on Importance of low power design in VLSI circuits.

Q3. (20 Marks Each)	
A	Solve any Two out of Three 5 marks each
i.	Write short note on Interconnect scaling and crosstalk of the interconnect.
ii.	Draw J-K Flipflop using CMOS and explain its operation.
iii.	Explain concept of precharge and evaluation in Dynamic CMOS circuits
B	Solve any One out of Two 10 marks each
i.	Consider a CMOS Inverter circuit with following parameters $\begin{gathered} \text { VTO, }=0.6 \mathrm{v}, \mathrm{VTO}, \mathrm{p}=-0.7 \mathrm{v} \\ \mu \mathrm{nCox}=60 \mu \mathrm{~A} / \mathrm{V}^{2,}(\mathrm{~W} / \mathrm{L}) \mathrm{n}=8 \\ \mu \mathrm{pCox}=25 \mu \mathrm{~A} / \mathrm{V}^{2,}(\mathrm{~W} / \mathrm{L}) \mathrm{p}=12 \end{gathered}$ Calculate noise margin, If the power supply voltage VDD $=3.3 \mathrm{v}$
ii.	Compare Ripple carry adder and Carry Lookahead adder, Explain 4-bit CLA adder circuit.

University of Mumbai
Examination 2021 under Cluster 06
(Lead College: Vidyavardhini's College of Engg Tech)
Examination Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016
Examination: TE Semester VI
Course Code: ELX603
Course Name:VLSI Design
Max. Marks: 80
Time: 2 hour

Q1:

Question Number	Correct Option (Enter either 'A'or ' $\mathbf{~}$ or' \mathbf{C}^{\prime} or ' \mathbf{D} ') Q1. A
Q2.	B
Q3.	A
Q4	A
Q5	B
Q6	D
Q7	A
Q8.	A
Q9.	C
Q10.	D
Q11.	A
Q12.	C
Q13.	A
Q14.	A
Q15.	B
Q16.	A
Q17.	B
Q18.	A

Q19.	B
Q20.	C

Important steps and final answer for the questions involving numerical example Q2(C)

Q3[(B-i)]:
$\mathrm{V}_{\text {OH }} \quad \mathrm{V}_{\text {in }}=0 \rightarrow$ NMOS in cut-off,
$V_{G S, p}>V_{T 0, p}$ conducts but no current then there is no voltage drop at
$V_{D S, p} \rightarrow V_{\text {out }}=\underline{V_{\text {oH }}=3.3 \mathrm{~V}}$
$\mathrm{V}_{\mathrm{OL}} \quad$ assume $V_{\text {in }}=V_{O H}=V_{D D}=3.3 \mathrm{v}$, then NMOS is linear bc $V_{D S, n}<\left(V_{G S, n}-V_{T 0, n}\right)$ PMOS is in saturation

Then $I_{D N}=\frac{\mu_{n} c_{o x}}{2} \frac{W_{n}}{L}\left[2(3.3-0.6) V_{O L}-V_{O L}^{2}\right]$ and $I_{D P}=\frac{\mu_{p} c_{o x}}{2} \frac{W_{p}}{L}(|-3.3|-|-0.7|)^{2}$
$I_{D N}=I_{D P} \quad \rightarrow \quad V_{O L}^{2}-5.4 V_{O L}+0.69=0 \quad \underline{V_{O L}=0.13 \mathrm{~V}}$
$\mathrm{v}_{\mathrm{II}} \quad \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IL}}$ then NMOS $\rightarrow V_{D S}>\left(V_{G S}-V_{t 0}\right)$ saturation
PMOS \rightarrow linear region
$\frac{\mu_{n} C_{\text {ox }}}{2} \frac{W_{n}}{L}\left(V_{\text {IL }}-0.6\right)^{2}=\frac{\mu_{p} C_{\text {ox }}}{2} \frac{W_{p}}{L}\left[2(3.3-|-0.7|)\left(V_{\text {out }}-3.3\right)-\left(V_{\text {out }}-3.3\right)^{2}\right]$
$\frac{60}{25} \frac{W_{n}}{W_{p}}\left(V_{\text {IL }}-0.6\right)^{2}=-5.2\left(V_{\text {out }}-3.3\right)-\left(V_{\text {out }}-3.3\right)^{2}$
$9.79\left[2\left(V_{I L}-0.6\right)\right]=-5.2\left(\frac{\partial V_{\text {git }}{ }^{-1}}{\partial V_{\text {in }}}\right)^{-2}-2\left(\frac{\partial V_{h i t}}{\partial V_{\text {in }}}\right)^{-1}\left(V_{\text {out }}-3.3\right), \quad V_{\text {out }}=9.79 V_{I L}-5.175$
$9.79\left(V_{I L}-0.6\right)^{2}=-5.2\left(9.79 V_{I L}-5.175-3.3\right)-\left(9.79 V_{I L}-5.175-3.3\right)^{2}$
$105.63 V_{I L}^{2}-126.78 V_{I L}+31.28=0 \quad V_{I L}=0.85 \mathrm{~V}$
$\mathrm{V}_{\mathbb{H}} \quad \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathbb{H}}$ then NMOS $\rightarrow V_{D S}!>V_{G S}-V_{t} \quad$ linear
PMOS $\rightarrow V_{D S}>V_{G S}-V_{t} \quad$ saturation
$\frac{\mu_{n} c_{o x}}{2} \frac{W_{n}}{L}\left[2\left(V_{\text {IH }}-0.6\right) V_{\text {out }}-V_{\text {out }}^{2}\right]=\frac{\mu_{p} c_{o x}}{2} \frac{W_{p}}{L}(3.3-0.7)^{2}$
$2\left(V_{\text {IH }}-0.6\right) V_{\text {out }}-V_{\text {out }}^{2}=\frac{25}{60} \frac{1}{4.08} 6.76$
$2 V_{\text {out }}+2\left(V_{I H}-0.6\right)\left(\frac{\partial V_{\text {olit }}}{\partial V_{\text {In }}}\right)^{-1}-2 V_{\text {out }}\left(\frac{\partial V_{\text {dit }}}{\text { PVin }}\right)^{-1}=0 \quad V_{\text {out }}=0.5 V_{I H}-0.3$
$2\left(V_{I H}-0.6\right)\left(0.5 V_{I H}-0.3\right)-\left(0.5 V_{I H}-0.3\right)^{2}=0.69$
$0.75 V_{I H}^{2}-0.9 V_{I H}-0.42=0 \quad V_{I H}=1.56 \mathrm{~V}$
$N M_{L}=V_{I L}-V_{O L}=0.72 \mathrm{~V}$
$N M_{H}=V_{O H}-V_{I H}=1.74 \mathrm{~V}$

University of Mumbai
Examination 2021 under Cluster 06
(Lead College: Vidyavardhini's College of Engg Tech)
Examinations Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016
Examination: TE Semester VI
Course Code: ELX 604 and Course Name: Signals and Systems

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Determine the signal is periodic or not. If a signal is periodic, specify it's fundamental period of signal $x(n)=e^{j 7 \pi n}$
Option A:	$\mathrm{x}(\mathrm{n})$ is an Aperiodic signal
Option B:	$x(\mathrm{n})$ is Periodic with fundamental period $\mathrm{N}=2$ samples/cycle
Option C:	$\mathrm{x}(\mathrm{n})$ is Periodic with fundamental period $\mathrm{N}=7$ samples/cycle
Option D:	$\mathrm{x}(\mathrm{n})$ is Periodic with fundamental period $\mathrm{N}=14$ samples/cycle
2.	What is the area of a Unit Impulse function?
Option A:	Zero
Option B:	Half of Unity
Option C:	Depends on the function
Option D:	Unity
3.	Convolution of the sequences of $\mathrm{x}_{1}(\mathrm{n})=\mathrm{x}_{2}(\mathrm{n})=\{1,1,1\}$?
Option A:	\{1,1,1,1\}
Option B:	\{1,2,3,2,1\}
Option C:	\{1,2,3,1\}
Option D:	\{1,2,2,1\}
4.	A discrete-time system with input $\mathrm{x}(\mathrm{n})$ and $\mathrm{y}(\mathrm{n})$ related by $\mathrm{y}(\mathrm{n})=\mathrm{n}[\mathrm{x}(\mathrm{n})]$
Option A:	linear ,time varying, and stable
Option B:	non-linear,time invariant, and unstable
Option C:	non-linear, time varying, and stable
Option D:	linear, time varying, and unstable
5.	What is the Nyquist rate of the following signal $\mathrm{x}(\mathrm{t})=3 \cos (50 \pi \mathrm{t})+10 \sin (300 \pi \mathrm{t})-\cos (100 \pi \mathrm{t})$?
Option A:	50 Hz
Option B:	100 Hz
Option C:	200 Hz
Option D:	300 Hz

6.	What is the condition for causality in Laplace domain?
Option A:	ROC should be to the right of right most pole
Option B:	ROC should be to the right of right most zero
Option C:	ROC should be to the right of left most pole
Option D:	All the zeros should be in the right half of the s plane
7.	Which type of system response to its input represents the zero value of its initial condition?
Option A:	Zero state response
Option B:	Zero input response
Option C:	Total response
Option D:	Natural response
8.	What is the z -transform of $\mathrm{x}(\mathrm{n}-1)$ if $\mathrm{x}(\mathrm{n})$ has z -transform $\mathrm{X}(\mathrm{Z})$?
Option A:	ZX(Z)
Option B:	[-X(Z)] [$\left.\mathrm{Z}^{\wedge} 1\right]$
Option C:	[X (-Z)][$\left.\mathrm{Z}^{\wedge}(-1)\right]$
Option D:	[X(Z)] [$\left.\mathrm{Z}^{\wedge}(-1)\right]$
9.	A finite- length signal has $\mathrm{X}(\mathrm{z})=0.5+0.2 \mathrm{z}^{-1}+0.7 \mathrm{z}^{-2}+0.5 \mathrm{z}^{-3}$; its ROC is
Option A:	The entire z - plane except $\mathrm{z}=0$
Option B:	Outside the unit circle
Option C:	Inside the unit circle
Option D:	On the unit circle
10.	The convolution property of the z -transforms states that the inverse z - transform of $\mathrm{H}(\mathrm{z}) \mathrm{X}(\mathrm{z})$ is given by
Option A:	$\sum_{k=0}^{n-1} h(k) x(n-k)$
Option B:	$\sum_{k=0}^{\infty} h(k) x(k-n)$
Option C:	$\sum_{k=-\infty}^{\infty} h(k) x(n-k)$
Option D:	$\sum_{k=-\infty}^{0} h(n-k) x(n)$
11.	Find the Laplace Transform of $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-\mathrm{a})$
Option A:	$1-e^{\text {as }}$
	s
Option B:	1
	$s-a$
Option C:	$1-e^{-a s}$
	s

Option D:	$\frac{1}{s+a}$
12.	Find the initial and final values for the following function $\mathrm{X}(\mathrm{~s})=\frac{s+5}{s^{2}+3 s+2}$
Option A:	initial value $=0$ and final value $=1$
Option B:	initial value $=1$ and final value $=0$
Option C:	initial value $=5$ and final value $=3$
Option D:	initial value $=3$ and final value $=5$
13.	The trigonometric Fourier series of a periodic time function can have only
Option A:	Only cosine terms
Option B:	Only sine terms
Option C:	Both cosine and sine terms
Option D:	Dc and cosine terms
14.	Which among the below mentioned transform pairs is/are formed between the auto-correlation function and the energy spectral density, in accordance to the property of Energy Spectral Density (ESD)?
Option A:	Laplace Transform
Option B:	Z-Transform
Option C:	Fourier Transform
Option D:	Wavelet Transform
15.	The Fourier transform of the signal $\delta(\mathrm{t}+1)+\delta(\mathrm{t}-1)$ is
Option A:	$2 /(1+\mathrm{j} \omega)$
Option B:	$2 /(1-\mathrm{j} \omega)$
Option C:	$2 \cos \omega$
Option D:	$2 \sin \omega$
16.	Duality Theorem / Property of Fourier Transform states that
Option A:	Shape of signal in time domain \& shape of spectrum can be interchangeable
Option B:	Shape of signal in frequency domain \& shape of spectrum can be interchangeable
Option C:	Shape of signal in time domain \& shape of spectrum can never be interchangeable
Option D:	Shape of signal in frequency domain \& shape of spectrum can never be interchangeable
17.	Which theorem states that the total average power of a periodic signal is equal to the sum of average powers of the individual Fourier coefficients?
Option A:	Parseval's Theorem
Option B:	Rayleigh's Theorem
Option C:	Thevenin's Theorem
Option D:	Norton's Theorem
18.	Choose the correct expression for Fourier series coefficient Ck in terms of the discrete signal $\mathrm{x}(\mathrm{n})$.

Option A:	$\frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{\frac{j 2 \pi n k}{N}}$
Option B:	$\frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{\frac{-j 2 \pi n k}{N}}$
Option C:	$\frac{1}{N} \sum_{n=0}^{N+1} x(n) e^{\frac{j 2 \pi n k}{N}}$
Option D:	$\frac{1}{N} \sum_{n=0}^{N+1} x(n) e^{\frac{-j 2 \pi n k}{N}}$
19.	The discrete time signal $\mathrm{a}^{\mathrm{n}} . \mathrm{u}(\mathrm{n})$ will have alternate positive and negative amplitudes decaying with time for following case.
Option A:	$-1<\mathrm{a}<0 ;$ and $\mathrm{n}<0$
Option B:	$-1<\mathrm{a}<0 ;$ and $\mathrm{n}>0$
Option C:	$0<\mathrm{a}<1 ;$ and $\mathrm{n}<0$
Option D:	$0<\mathrm{a}<1 ;$ and $\mathrm{n}>0$
20.	The Fourier transform of the signal sgn(t) is
Option A:	$-2 \mathrm{j} \omega$
Option B:	$4 \mathrm{j} \omega$
Option C:	$2 /(\mathrm{j} \omega)$
Option D:	$(1+\mathrm{j} \omega)$

Q2.	A Marks) i. Solve any Two Determine the power and energy of the following continuous time signal $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-\mathrm{at}} \mathrm{u}(\mathrm{t})$ ii. Check for the Dynamicity, Linearity, Shift Variant ,Causality and Stability $\mathrm{y}(\mathrm{t})=\mathrm{x}(2 \mathrm{t})$ iii. Obtain the Fourier transforms and spectrums of the signal $\mathrm{x}(\mathrm{t})=\cos w_{o} \mathrm{t}$ B Solve any One Find the inverse Laplace transform of the function $\mathrm{X}(\mathrm{S})=\frac{3 s+7}{\left(s^{2}-2 S-3\right)}$ For ROCs of i) $\operatorname{Re}(\mathrm{s})>3$ ii) $\operatorname{Re}(\mathrm{s})<-1$ iii) $-1<\operatorname{Re}(\mathrm{s})<3$ i. Perform the convolution of $\mathrm{x}_{1}(\mathrm{t})=\mathrm{e}^{-3 \mathrm{t}} \mathrm{u}(\mathrm{t})$ and $\mathrm{x}_{2}(\mathrm{t})=\mathrm{t} \mathrm{u}(\mathrm{t})$ Using ii.

Q3.	(20 Marks)
A	Solve any Two \quad 5 marks each
i.	Find the DTFT of discrete time signal $\mathrm{x}(\mathrm{n})=\mathrm{a}^{\mathrm{n}} \mathrm{u}(\mathrm{n})$ for $-1<\mathrm{a}<1$.
ii.	Determine the z-transform of $\mathrm{x}(\mathrm{n})=(1 / 2)^{\mathrm{n}} \mathrm{u}(\mathrm{n})+2^{\mathrm{n}} \mathrm{u}(\mathrm{n})$. Find the ROC and draw the locations of poles and zeros in the z-plane.
iii.	Write the relationship between z-transform and discrete time fourier transform.
B	Solve any One i. Find the inverse z - transform of $=\frac{1}{1-1.5 z^{-1} \quad+0.5 z^{-2}}$ For ROCs of i) ROC: $\|(\mathrm{Z})\|>1$ ii) ROC: $\|(\mathrm{Z})\|<0.5$ iii) ROC: $0.5<\|(\mathrm{Z})\|<1$
ii.	Determine DTFS for the sequence $\mathrm{x}(\mathrm{n})=4 \cos \left(\frac{\pi n}{2}\right)$

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examination Commencing from June 01, 2021

Program: Electronics Engineering

Curriculum Scheme: Rev 2016
Examination: TE Semester VI
Course Code: ELX 604 and Course Name: Signals and Systems
Time: 2 hour
Max. Marks: 80
Q1:

Question Number	Correct Option (Enter either 'A' or 'B' or ' \mathbf{C} ' ${ }^{\prime}$ or ' $\mathbf{D} '$
Q1.	B
Q2.	D
Q3.	B
Q4	D
Q5	D
Q6	A
Q7	A
Q8.	D
Q9.	A
Q10.	C
Q11.	C
Q12.	B
Q13.	D
Q14.	C
Q15.	C
Q16.	A
Q17.	A
Q18.	B
Q19.	B
Q20.	C

Important steps and final answer for the questions involving numerical example

Q2(A)(i)
$\mathrm{E}=\frac{1}{2 a}$ Joule
If Energy of the signal is finite then its power is zero.Given signal is an energy signal.
(ii)

System is a Dynamic, Linear, Shift Variant, Non-Causal and stable.
(iii)

Q. 2 ini) $x(t)=\cos \omega_{0} t$

$$
\text { Q.OB>>X(s)} \begin{aligned}
& =\frac{3 s+7}{S-2 s-3} \\
& =\frac{A}{(s-3)}+\frac{B}{(s-1)}
\end{aligned}
$$

Using P.F.E, $A=4 \quad \& \quad B=-1$

a) $\operatorname{Re}(3)<-1$,
$\begin{aligned} \text { 9) } \operatorname{Re}(3) & <-1, \\ \therefore x(t) & \left.=4\left[-e^{3 t} u(-t)\right]-\left.\left[-e^{-t} \cdot u(-t)\right] \quad\right|^{j \omega}\right) \\ & =\left[e^{-t}-4 e^{3 t}\right] \cdot u(t)\end{aligned}$
3) $-1<\operatorname{Re}(s)<3$

$$
\begin{aligned}
& \text { Q.35 is } x(z)=\frac{1}{1-1.5 z^{1}+0.5 z^{2}} \\
& =\frac{z^{2}}{z^{2}-1.5 z+0.5} \\
& \therefore \frac{x(z)}{z}=\frac{z}{z-1.5 z+0.5}=\frac{A}{(z-1)}+\frac{8}{(z-0.5)} \rightarrow \text { (1) } \\
& \text { APter solving, } A=2 \& 80-1, \\
& \text { Ineq? } 10, \frac{x(z)}{z}=\frac{2}{z-1}-\frac{1}{z-0.5} \\
& \triangle \text { Roc: } \mid z 1>1, x(z)=2 \frac{z}{z-1}-\frac{z}{z-0.5} \rightarrow \text { (11) } \\
& \quad \because I z T, \\
& \therefore \quad x(0)=2(1)^{?} \cdot 4(n)-(0.5)^{n} \cdot 4(n)
\end{aligned}
$$

2) ROC 1 $|z|<015$,

$$
\begin{aligned}
& \text { 2) ROC: }|z|<015, \\
& \quad \cdot x(n)=2\left[(-1)^{n} \cdot u(-n-1)\right]-\left[(0,5)^{n} \cdot u(-n-1)\right] \\
& \Rightarrow \text { ROC: } 0.5<|z|<1 \\
& \therefore x(n)
\end{aligned}=2\left[(-1)^{n} \cdot u(-n-1)\right]-(0.5)^{n} \cdot u(n) \quad \$
$$

Q.3(B) (ii)

Fourier series coefficients:
$\mathrm{C}_{0}=0, \mathrm{C}_{1}=2, \mathrm{C}_{2}=0, \mathrm{C}_{3}=2$,
Q. 2 (B) (ii)
$\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}) * \mathrm{~h}(\mathrm{t})$
Use the C.T convolution formula,
$y(t)=1 / 9 .\left(e^{-3 t}+3 t-1\right), \quad t \geq 0$.
Graphical convolution method is necessary.
Q. 3 (A) (i) DTFT of $u(n)$ is $1 /\left(1-a e^{-j w}\right)$
(ii) $\mathrm{X}(\mathrm{z})=\frac{z}{z-1 / 2}+\frac{z}{z-2}$

Draw pole-zero plot. ROC is $|z|>2$
(iii) $\mathrm{X}\left(\mathrm{e}^{\mathrm{j} w}\right)=\left.\mathrm{X}(\mathrm{z})\right|_{z=e^{j w}}$

Fourier series representation of
$x(n)=2 e^{j \pi n / 2}+2 e^{j 3 \pi n 2}$

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examinations Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016
Examination: TE Semester VI
Course Code: ELXDLO6021 and Course Name: Microwave Engineering
Time: 2 hours
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Reflex klystron is
Option A:	An amplifier
Option B:	An oscillator
Option C:	An attenuator
Option D:	A filter
2.	What is the best medium to handle the large microwave power
Option A:	Coaxial line
Option B:	Rectangular wave guide
Option C:	Strip line
Option D:	Circular wave guide
3.	In a waveguide the guided wavelength is
Option A:	Same as the unguided wavelength
Option B:	Less than the unguided wavelength
Option C:	More than the unguided wavelength
Option D:	Not related to the unguided wavelength
4.	Which is used for the amplification of microwave energy
Option A:	Gunn diode
Option B:	Reflex klystron
Option C:	Magnetron
Option D:	Travelling wave tube
5.	On which of the following principle does Klystron operate?
Option A:	Amplitude Modulation
Option B:	Frequency Modulation
Option C:	Angle Modulation
Option D:	Velocity Modulation
6.	Which of the following is the biggest advantage of the TRAPATT diode over IMPATT diode

Option A:	Low Noise
Option B:	High efficiency
Option C:	Ability to operate at high frequencies
Option D:	Lesser sensitivity to harmonics
7.	In rectangular waveguides the ratio of width to height is
Option A:	0.5
Option B:	1
Option C:	2
Option D:	4
8.	If a waveguide is filled with a dielectric having $\epsilon_{r}=4$, the phase velocity of the wave is
Option A:	$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Option B:	$0.75 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Option C:	$1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Option D:	$10^{8} \mathrm{~m} / \mathrm{s}$
9.	Strip line can be compared to which of the following
Option A:	Flattened rectangular waveguide
Option B:	Flattened axial waveguide
Option C:	Flattened circular waveguide
Option D:	Flattened co axial cable
10.	The IMPATT diode operates in --------- bias mode.
Option A:	forward
Option B:	zero
Option C:	Reverse
Option D:	saturation
11.	In rectangular Waveguide, mode scripts m and n indicate
Option A:	Number of full wave patterns
Option B:	Number of half wave patterns
Option C:	Number of the zeros of the field
Option D:	No patterns in the field
12.	In TE and TM modes of rectangular waveguides having propagation in z direction
Option A:	E_{7} and H_{7} are both zero
Option B:	In TE mode E_{7} is zero and in TM mode H_{z} is zero
Option C:	In TE mode H_{7} is zero and in TM mode E_{7} is zero
Option D:	In both TE and TM modes both E_{z} and H_{z} are non-zero
13.	HEMT used in the microwave circuit is a
Option A:	Low noise Amplifier
Option B:	Detector
Option C:	Source
Option D:	High power Amplifier

14.	If the length of the intrinsic region in IMPATT diode is $2 \mu \mathrm{~m}$ and the carrier drift velocity are $10^{7} \mathrm{~cm} / \mathrm{s}$, then the nominal frequency of the diode is
Option A:	12 GHz
Option B:	25 GHz
Option C:	30 GHz
Option D:	24 GHz
15.	The fringe effect can be neglected in a parallel plate waveguide because of
Option A:	The dielectric material used
Option B:	The non-dielectric material used
Option C:	Width of the plates is greater than the distance between the plates
Option D:	Material of the parallel plate waveguide used
16.	With an increase in the operating frequency of a micro strip line, the effective di electric constant of a micro strip line
Option A:	Increases
Option B:	Decreases
Option C:	Independent of frequency
Option D:	Depends on the material of the substrate used as the micro strip line
17.	A magic tee is nothing but
Option A:	a modification of H - plane tee
Option B:	a modification of E-plane tee
Option C:	a combination of two E - plane tees
Option D:	a combination of E-plane and H-plane tee
18.	GaAs is used in the fabrication of GUNN diodes because
Option A:	GaAs is cost effective
Option B:	It less temperature sensitive
Option C:	It has low conduction band electrons
Option D:	less forbidden energy gap
19.	The TWT is sometimes preferred to the magnetron as a radar transmitter output tube because it is
Option A:	Less noisy
Option B:	More broad band
Option C:	Capable of a longer duty cycle
Option D:	A more efficient cycle
20.	The mode of propagation in a micro strip line is
Option A:	Quasi TEM mode
Option B:	TEM mode
Option C:	TM mode
Option D:	TE mode

A	Describe the Gunn effect with the aid of two valley model theory.
B	Derive S matrix for a directional coupler and also verify properties of it.
C	A transmission system using a TE_{10} mode waveguide of dimensions $\mathrm{a}=5 \mathrm{~cm}$, $\mathrm{b}=3 \mathrm{~cm}$ is operating at 10 GHz . The distance measured between two minimum power points is 1 mm on a slotted line. Calculate the VSWR of the system
Q3	Solve any Two Questions out of Three 10 marks each
A	Explain the construction of Magic Tee and Derive its S-matrix.
B	Explain the micro strip line matching networks and explain in detail noise figure in an amplifier
C	A two Cavity Klystron amplifier has the following parameters: $\mathrm{Vo}=1000 \mathrm{~V}, \mathrm{Ro}=40 \mathrm{kOhm}, \mathrm{Io}=25 \mathrm{~mA}, \mathrm{f}=3 \mathrm{GHz}$ Gap spacing in either cavity: $\mathrm{d}=1 \mathrm{~mm}$ Spacing between the two cavities: $\mathrm{L}=4 \mathrm{~cm}$ Effective shunt impedance, excluding beam loading: $\mathrm{R}_{\mathrm{sh}}=30 \mathrm{Kohm}$ A. Find the input gap voltage to give maximum Voltage V2. B. Find the Voltage gain, neglecting the beam loading in the output cavity C. Find the efficiency of the amplifier, neglecting beam loading. D. Calculate justified in the preceding calculation the beam loading conductance and show that neglecting it was justified.

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examination Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016
Examination: TE Semester VI
Course Code: ELXDLO6021 and Course Name: Microwave Engineering
Time: 2 hours
Max. Marks: 80
Q1:

Question Number	Correct Option Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' ${ }^{\prime}$ ')
Q1.	B
Q2.	B
Q3.	C
Q4	D
Q5	D
Q6	B
Q7	C
Q8.	C
Q9.	D
Q10.	C
Q11.	B
Q12.	A
Q13.	B
Q14.	C
Q15.	C
Q16.	D
Q17.	D
Q18.	C
Q19.	A
Q20.	

Important steps and final answer for the questions involving numerical example

Q2(c):
For $T E_{10}$ mode waveguide,

$$
\begin{gathered}
\lambda_{c}=2 a=2 \times 5=10 \mathrm{~cm} \\
\lambda_{0}=\frac{c}{f}=\frac{3 \times 10^{10}}{10 \times 10^{9}}=3 \mathrm{~cm} \\
d_{2}-d_{1}=1 \mathrm{~mm}=10^{-1} \mathrm{~cm}
\end{gathered}
$$

We know

$$
\lambda_{g}=\frac{\lambda_{0}}{1-\left(\lambda_{0} / \lambda_{c}\right)^{2}}=\frac{3}{\sqrt{1-(3 / 10)^{2}}}=3.144 \mathrm{~cm}
$$

For double minimum method VSWR is given by

$$
V S W R=\frac{\lambda_{g}}{\pi\left(d_{2}-d_{1}\right)}=\frac{3.144}{\pi\left(1 \times 10^{-1}\right)}=10.003=10
$$

Hence, the VSWR value for the given transmission system is 10 .

Q3(c):
a. For maximum $V_{2}, J_{1}(X)$ must be maximum. This means $J_{1}(X)=0.582$ at $X=1.841$. The electron velocity just leaving the cathode is
$v_{0}=\left(0.593 \times 10^{6}\right) \sqrt{V_{0}}=\left(0.593 \times 10^{6}\right) \sqrt{10^{3}}=1.88 \times 10^{7} \mathrm{~m} / \mathrm{s}$
The gap transit angle is

$$
\theta_{g}=\omega \frac{d}{v_{0}}=2 \pi\left(3 \times 10^{9}\right) \frac{10^{-3}}{1.88 \times 10^{7}}=1 \mathrm{rad}
$$

The beam-coupling coefficient is

$$
\beta_{i}=\beta_{0}=\frac{\sin \left(\theta_{8} / 2\right)}{\theta_{8} / 2}=\frac{\sin (1 / 2)}{1 / 2}=0.952
$$

The dc transit angle between the cavities is

$$
\theta_{0}=\omega T_{0}=\omega \frac{L}{v_{0}}=2 \pi\left(3 \times 10^{9}\right) \frac{4 \times 10^{-2}}{1.88 \times 10^{7}}=40 \mathrm{rad}
$$

The maximum input voltage V_{1} is then given by

The maximum input voltage V_{1} is then given by

$$
V_{1 \max }=\frac{2 V_{0} X}{\beta_{i} \theta_{0}}=\frac{2\left(10^{3}\right)(1.841)}{(0.952)(40)}=96.5 \mathrm{~V}
$$

b. The voltage gain is found as

$$
A_{v}=\frac{\beta_{0}^{2} \theta_{0}}{R_{0}} \frac{J_{1}(X)}{X} R_{\text {sh }}=\frac{(0.952)^{2}(40)(0.582)\left(30 \times 10^{3}\right)}{4 \times 10^{4} \times 1.841}=8.595
$$

c. The efficiency can be found as follows:

$$
\begin{aligned}
& I_{2}=2 I_{0} J_{1}(X)=2 \times 25 \times 10^{-3} \times 0.582=29.1 \times 10^{-3} \mathrm{~A} \\
& V_{2}=\beta_{0} I_{2} R_{\text {sh }}=(0.952)\left(29.1 \times 10^{-3}\right)\left(30 \times 10^{3}\right)=831 \mathrm{~V}
\end{aligned}
$$

Hence Efficiency= 46.2 \%

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examinations Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016
Examination: TE Semester VI
Course Code: ELXDLO6022 and Course Name: Electronic Product Design
Time: 2 hour

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	What is the operating temperature range of military electronics products?
Option A:	$70^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Option B:	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Option C:	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Option D:	$-75^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$
Option A:	Very High
Option B:	High
Option C:	Low
Option D:	Moderate
3.	Which type of noise coupling deals with the transmission or reception of propagating an electromagnetic energy in the circuit by yielding far-field effects?
Option A:	Conductive
Option B:	Inductive
Option C:	Radiated
Option D:	Capacitive
Option A:	$4^{\text {th }}$ Industrial Revolution
	PLC is product which has been introduced in

Option B:	$3{ }^{\text {rd }}$ Industrial Revolution
Option C:	$2^{\text {nd }}$ Industrial Revolution
Option D:	$1^{\text {st }}$ Industrial Revolution
5.	What is the sampling rate of an analog real time oscilloscope (MSO)?
Option A:	$2 \mathrm{Gs} / \mathrm{s}$
Option B:	$20 \mathrm{Gs} / \mathrm{s}$
Option C:	$40 \mathrm{Gs} / \mathrm{s}$
Option D:	$100 \mathrm{Gs} / \mathrm{s}$
6.	In $\mu \mathrm{A} 741 \mathrm{op}-\mathrm{amp}$, the use of 3 pF compensation capacitor also increases the slew rate by the factor of
Option A:	20
Option B:	15
Option C:	10
Option D:	30
7.	In the phases of product design the following phase needs less frequent iteration
Option A:	Design and Development
Option B:	Testing and verification
Option C:	Installation and Maintenance
Option D:	Modeling and simulation
8.	Which among the below specified assertions is not a grounding consideration associated with ADC as well as DAC?
Option A:	Analog side to analog ground
Option B:	Digital side to digital ground
Option C:	Use of separate power supply and connection of their ground leads to single point reference
Option D:	Reduction of inductive loop area between power and return traces
9.	The Following model takes a risk-oriented view of the development life cycle.

Option A:	Waterfall
Option B:	V Cycle
Option C:	Spiral
Option D:	Rapid Prototype
10.	High current circuits are purposely located or placed near the edge of PCB in accordance to the supply lines for \qquad
Option A:	Removal of heat
Option B:	Isolation of stray current
Option C:	Reduction of path length
Option D:	Remove the crosstalk
11.	Which problems are about to occur if PCB is not designed properly in a confined manner for digital circuits? A. Diffraction B. Refraction C. Ground \& Supply-line Noise D. Electromagnetic Interference
Option A:	A \& B
Option B:	B \& C
Option C:	C \& D
Option D:	A, B, C, D
12.	Which among the following exhibits inversely proportional relationship with the reliability?
Option A:	Production cost
Option B:	Design and development cost
Option C:	Maintenance and repair cost
Option D:	Quality Testing cost
13.	Which among the following belongs to the category of logistic support type of requirement?
Option A:	Temperature condition
Option B:	Stress condition

Option C:	Duty Cycle
Option D:	Maintenance testing
14.	Which process of product development cycle plays a crucial role in determining the suitability of requirements in accordance to the expected system solution along with the quantitative description?
Option A:	Validation
Option B:	Verification
Option C:	Integration
Option D:	Field Testing
15.	What would be the composite failure rate of a system comprising one VLSI microprocessor with 6 SSI ICs and 10 resistors corresponding to the data given below? Assume a single board system PCB 2000 FIT SSIC 70 FIT R 20 FIT VLSI microprocessor 600 FIT
Option A:	1250 FIT
Option B:	2400 FIT
Option C:	3220 FIT
Option D:	4520 FIT
16.	Find the overall reliability of two systems connected in parallel having individual reliability 0.9
Option A:	0.99
Option B:	1
Option C:	0
Option D:	0.9
17.	Static analysis of the designed product include:
Option A:	Cohesiveness
Option B:	Behavior verification
Option C:	Performance analysis

Option D:	Tradeoff analysis
18.	What doesn't play a key role in the standard PCB documentation?
Option A:	Part number abbreviations
Option B:	Package size
Option C:	Lead spacing
Option D:	Rating of the components
19.	What doesn't figure in the burden of legal liabilities gets reduced in the process of documentation?
Option A:	By failure modes
Option B:	By giving list of the components
Option C:	By warning of hazardous operations
Option D:	By operational limits
20.	accurate cost and production efficiency. Option A: Manual
Option B:	Brochures
Option C:	Bill of material
Option D:	Memos

Q2	Solve any one Question out of Two
i	Classify the product based on six parameters each
ii	Explain the main design considerations while designing Data Acquisition System.
B	Solve any one Question out of Two
i	Explain different technological and other specifications in Electronic Product Design

ii	Characterize the Analog to Digital converter. Explain what basic parameters while testing the same.

Q3.	Solve any one Question out of Two 10 marks each
i	How the AOI test is carried out state the limitations and advantages of the same.
ii	Explain black box, White box and grey box testing
B	Solve any one Question out of Two $\quad \mathbf{1 0}$ marks each
i	How does the V Cycle model differ from the waterfall model? Explain the V Cycle model with all the steps with proper justification
ii	Define documentation and explain different types of documentation with their specific use and format.

University of Mumbai

Examination 2021 under Cluster 06
(Lead College: Vidyavardhini's College of Engg Tech)
Examination Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016
Examination: TE Semester VI
Course Code: ELXDLO6022 and Course Name: Electronic Product Design
Time: 2 hour
Max. Marks: 80

Q1:

Question Number	Correct Option Enter either 'A' or 'B' or ' \mathbf{C} ' or ' \mathbf{D} ')
Q1.	C
Q2.	B
Q3.	C
Q4	B
Q5	A
Q6	C
Q7	C
Q8.	D
Q9.	C
Q10.	A
Q11.	C
Q12.	C
Q13.	D
Q14.	A
Q15.	C
Q16.	A
Q17.	A
Q18.	D
Q19.	B
Q20.	C

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examinations Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016 (CBCGS)
Examination: TE Semester VI
Course Code: ELXDLO6023 and Course Name: Wireless Communication
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	What must be designed to separate the transmit \& receive signal at mobile subscriber unit.
Option A:	Antenna
Option B:	Duplexer
Option C:	Transceiver
Option D:	Control Unit
2.	Formulate the system capacity, if a mobile communication system has allocated number of 800 voice channels. If the service area is divided into 20 cells with a frequency reuse factor of 4.
Option A:	800
Option B:	3200
Option C:	4000
Option D:	16000
3.	For a given frequency reuse ratio of 8 and the cell radius of 0.8 km , the distance between nearest cochannel cells is
Option A:	6.4 km
Option B:	0.8 km
Option C:	0.1 km
Option D:	8.8 km
4.	To examine the measure of the ability of a mobile subscriber to access a cellular system during the busiest hour is------
Option A:	circuit merit level
Option B:	mean opinion score
Option C:	grade of service
Option D:	service quality
5.	Two main reasons that contribute to the rapid fluctuations of the signal amplitude in mobile communications are
Option A:	Multipath fading and Doppler effect
Option B:	Reflection and Refraction
Option C:	Diffraction and Scattering

Option D:	Blocking and Shadowing
6.	In the development of base station transmitter operates at 900 MHz carrier frequency. For a mobile moving at a speed of $72 \mathrm{Km} / \mathrm{h}$ in a direction perpendicular to the direction of arrival of the transmitted signal, the received carrier frequency is
Option A:	899.99994 MHz
Option B:	900.00006 MHz
Option C:	900.00003 MHz
Option D:	900 MHz
7.	When 2 mobile subscribers are located at distance of 100 meters \& 1 km apart from cell site resp. then by what amount the received signal strength differs? (assuming other parameters are constant).
Option A:	20 dB
Option B:	40 dB
Option C:	80 dB
Option D:	100 dB
8.	The guard time between the time slots in TDMA frame helps in minimizing the interference due to ___ along different radio paths in the wireless channel.
Option A:	propagation delays
Option B:	adjacent channel
Option C:	multipath fading
Option D:	timing inaccuracies
9.	To synthesize the increment in bandwidth of message signa, the deciding factor is
Option A:	PN Sequence
Option B:	Gold sequence
Option C:	Spread spectrum
Option D:	Processing gain
10.	X -OR addition of 2 m sequence PN generators is nothing but
Option A:	propagation delay generator
Option B:	spectrum modulation
Option C:	golden ration generator
Option D:	gold sequence generator
11.	To organize high spectrum efficiency and constant amplitude in GSM, the modulation technique used is \qquad
Option A:	FSK
Option B:	QPSK
Option C:	GMSK
Option D:	OFDM

12.	To facilitate the identity of mobile phone device, the MSC uses the database as
Option A:	HLR
Option B:	VLR
Option C:	AuC
Option D:	EIR
13.	Considering Coded data packets in GSM, compute the net data rate (data plus signaling) and the effective transmission rate of a 9,600 bps GSM data service.
Option A:	9600 bps
Option B:	22.8 kbps
Option C:	33.854 kbps
Option D:	13 kbps
14.	If the trailing bits, stealing bits, guard bits, and training bits in a GSM frame are considered as overhead, and the rest of the bits as data, then what is the percentage overhead in a GSM frame?
Option A:	57.14\%
Option B:	70.166 \%
Option C:	91 \%
Option D:	27 \%
15.	To illustrate the user occupying (a single) time slot has to wait for time duration of between two successive transmissions
Option A:	$577 \mu \mathrm{~s}$
Option B:	4.615 ms
Option C:	120 ms
Option D:	6.12 s
16.	While design, the effect of spread spectrum modulation is that the bandwidth of the spreaded signal \qquad .
Option A:	remains constant
Option B:	increases significantly
Option C:	increases marginally
Option D:	decreases
17.	How much bandwidth is occupied in selection of each carrier of IS-95 standard
Option A:	25 KHz
Option B:	30 KHz
Option C:	200 KHz
Option D:	1250 KHz
18.	Cdma2000-1xRTT system supports a typical throughput of up to \qquad per mobile user.
Option A:	115kbps
Option B:	144 kbps
Option C:	384 kbps

Option D:	2 mbps
19.	In closed loop power control, the base station sends power control messages to the mobile user about once every
Option A:	1 ms
Option B:	10 ms
Option C:	100 ms
Option D:	1 s
20.	The logical control channel specified on the reverse link in W-CDMA system is which channel?
Option A:	Sync
Option B:	Access
Option C:	Paging
Option D:	pilot

Q2	
A	Solve any Two
i.	Distinguish between frequency division duplexing \& time division duplexing
ii.	Describe various factors influencing small scale fading
iii.	Discuss in brief about TDMA frame structure \& Efficiency of TDMA.
B	Solve any One marks each
i.	Explain GSM Network architecture with neat block diagram. Compute the longest time over which a mobile station would have to wait in order to determine the frame number being transmitted by GSM cell-site.
ii.	Illustrate the function of GPRS architecture in brief. A CDMA system has a bandwidth of 1.25 MHz and transmits baseband data at 9.6 kbps rate. If 40 number of users can simultaneously establish communication links, what is the bandwidth efficiency of the system?

Q3	
A	Solve any Two
i.	Describe the concept of frequency reuse, define cluster.
ii.	Explain the types of small-scale fading.
iii.	Discuss about direct sequence spread spectrum transmitter \& receiver with neat block diagram.
B	Solve any One
i.	Explain hand off in GSM, Illustrate types of GSM hand off in GSM. If the trailing bits, stealing bits, guard bits, and training bits in a GSM frame are considered as overhead, and the rest of the bits as data, then what is the percentage overhead in a GSM frame?
ii.	Distinguish between W-CDMA and IS-95 CDMA. Determine the maximum raw instantaneous data rate that can be provided to a single user in EDGE, assuming that a single time slot on a single GSM channel is available.

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examinations Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016 (CBCGS)
Examination: TE Semester VI
Course Code: ELXDLO6023 and Course Name: Wireless Communication
Time: 2 hour
Max. Marks: 80
Q1:

Question Number	Correct Option (Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	B
Q2.	C
Q3.	A
Q4	C
Q5	A
Q6	B
Q7	B
Q8.	A
Q9.	D
Q10.	A
Q11.	D
Q12.	B
Q13.	D
Q14.	B
Q15.	B
Q16.	B
Q17.	B
Q18.	B
Q19.	B
Q20.	

Q2.A) i)

FDD	TDD
Simpler to implement	Implementation is complex

Simultaneous uplink \& downlink transmission	Only uplink (UL) or downlink (DL) at any time
No need for synchronization hence simpler implementation	Need for synchronization within the whole network
Needs paired spectrum	No need for paired spectrum
UL/DL ratio is fixed	Number of UL/DL ratio is changeable
Definition-	Definition-
Applications-	Applications-

(* 1 mark each)
ii) Small Scale fading definition (reception of signal at rec. through multi directions..) (1 mark)
a) Multipath propagation,
b) Speed of mobile,
c) Speed of s (1 mark each)
iii) TDMA frame \& explanation - $\mathbf{3}$ marks

Efficiency - $\mathbf{2}$ marks

TDMA Frame -

Efficiency of TDMA - The efficiency of a TDMA system is a measure of the percentage of transmitted data that contains information as opposed to providing overhead for the access scheme. The frame efficiency, η_{f}, is the percentage of bits per frame which contain transmitted data. Note that the transmitted data may include source and channel coding bits, so the raw end-user efficiency of a system is generally less than η_{f}. The frame efficiency can be found as follows.

The number of overhead bits per frame is [Zie92],

$$
\begin{equation*}
b_{O H}=N_{r} b_{r}+N_{t} b_{p}+N_{t} b_{g}+N_{r} b_{g} \tag{8.2}
\end{equation*}
$$

where, N_{r} is the number of reference bursts per frame, N_{t} is the number of traffic bursts per frame, b_{r} is the number of overhead bits per reference burst, b_{p} is the number of overhead bits per preamble in each slot, and b_{g} is the number of equivalent bits in each guard time interval. The total number of bits per frame, b_{T}, is

$$
\begin{equation*}
b_{T}=T_{f} R \tag{8.3}
\end{equation*}
$$

where T_{f} is the frame duration, and R is the channel bit rate. The frame efficiency η_{f} is thus given as

$$
\begin{equation*}
\eta_{f}=\left(1-\frac{b_{O H}}{b_{r}}\right) \times 100 \% \tag{8.4}
\end{equation*}
$$

Q.2.B)
i) Block diagram - $\mathbf{3}$ marks

Explanation - 4 marks
Computation - $\mathbf{3}$ marks

Explanation of each block----

Computation:

The counter for the multiframe keeps the track of traffic channel. So the longest time over which a mobile station would have to wait in order to determine the frame number being transmitted by a GSM cell-site will be same as the duration of a traffic multiframe.

Duration of a time-slot	$=0.577 \mathrm{~ms}$	(Standard)
Number of time-slots per frame	$=8$	(Standard)
Therefore, duration of a frame	$=8 \times 0.577 \mathrm{~ms}=4.615 \mathrm{~ms}$	

Number of traffic frames/multiframe $=26$

Therefore, duration of a multiframe $=26 \times 4.615 \mathrm{~ms}=120 \mathrm{~ms}$

Hence, longest time over which a MS would have to wait $=\mathbf{1 2 0} \mathbf{m s}$
Ans.
ii) Block diagram - $\mathbf{3}$ marks

Explanation - 4 marks
Computation - $\mathbf{3}$ marks

GPRS Architecture:

Example:

CDMA system channel Bandwidth, $\mathrm{B}_{\mathrm{c}}=1.25 \mathrm{MHz}$ or 1250 kHz

Baseband data rate, R_{b}	$=9.6 \mathrm{kbps}$
Number of users, M	$=40$ users
Bandwidth efficiency	$=\left(\mathrm{M} \times \mathrm{R}_{\mathrm{b}}\right) / \mathrm{B}_{\mathrm{c}}=(40 \times 9.6 \mathrm{kbps}) / 1250 \mathrm{kHz}$
	$=0.307 \mathrm{bps} / \mathrm{Hz}$

Q.3.A)

i) Frequency Reuse - $\mathbf{3}$ marks

Cluster info. - $\mathbf{2}$ marks

Fundamentals of Frequency reuse :

- Each cellular BS is allocated a group of radio channels to be used within a small geographic area called cell
- BS in adjacent cells are assigned channel groups which contain completely different channels than neighbouring cells
- By limiting the coverage area to within the boundaries of a cell, the same groups of channels may be used to cover different cells that are separated from one another by distances large enough to keep the interference levels within tolerable limits
- The design process of selecting and allocating channel groups for all of the cellular BSs is called frequency reuse or frequency planning

b. Reuse factor of 7

Frequency reuse concept

Consider cellular system with S duplex channels available,let each cell be allocated a group of k channels $(\mathrm{k}<\mathrm{s})$ and if the S channels are divided among N cells.
Available radio channels can be expressed as

$$
\mathrm{S}=\mathrm{KN}
$$

The N cells which collectively use the complete set of available frequencies is called a cluster.
If it is replicated M times within the system, total no.of duplex channels:

C, can be used as a measure of capacity and is given by

$$
\begin{aligned}
\mathrm{C} & =\mathrm{MKN} \\
& =\mathrm{MS}
\end{aligned}
$$

$\mathrm{N}=$ Cluster size and typically equal to $4,7,12$.
ii) Based on multipath time delay- $\mathbf{2 . 5}$ marks

Based on doppler spread - $\mathbf{2 . 5}$ marks
Small-Scale Fading
(Based on multipath time delay spread)

1. High Doppler spread
2. Coherence time < Symbol period
3. Channel variations faster than baseband signal variations

4. Low Doppler spread
5. Coherence time $>$ Symbol period
6. Channel variations slower than baseband signal variations
iii) DSSS transmitter- diag. \& Explanation - $\mathbf{2 . 5}$ marks DSSS receiver- diag. \& Explanation - $\mathbf{2 . 5}$ marks

Fig: 7.38.1 (a) Direct sequence spread spectrum transmitter

Fig: 7.38.1 (b) Direct sequence spread spectrum receiver
Q.3. B)
i) Definition of Hand off - $\mathbf{1}$ mark

Types \& explanation - $\mathbf{6}$ marks ($\mathbf{1 . 5}$ each)
Example - $\mathbf{3}$ marks

- Intracell-cum-intra-BTS handoff

Intercell-cum-intra-BSC handoff
Inter-BSC-cum-intra-MSC handoff
Inter-MSC handoff

Number of bits in a time-slot	$=156.25$ bits	(Standard)
Number of time-slots per frame	$=8$	
Number of bits in a frame	$=156.25 \times 8=1250$ bits	
Number of trailing bits in a time-slot	$=3+3=6 \mathrm{bits}$	(Standard)
Number of stealing bits in a time-slot	$=1+1=2 \mathrm{bits}$	(Standard)
Number of guard bits in a time-slot	$=8.25$ bits	(Standard)
Number of training bits in a time-slot	$=26 \mathrm{bits}$	(Standard)
Therefore, number of overhead bits per TS	$=6+2+8.25+26=42.25$ bits	
Thus, number of overhead bits per frame	$=42.25 \times 8=338$ bits	
Percentage overhead per frame	$=338 / 1250=0.27$ or $\mathbf{2 7 \%}$	

Q. 3. B)

ii) Distinguish - 6 marks

Example - $\mathbf{4}$ marks

M			
Technical Parameter	W-CDMA	IS-95	
Channel bandwidth	5 MHz	1.25 MHz	
Chip rate	3.84 Mcps	1.2288 Mcps	
Data rates	upto 2 Mbps	upto 9.6 kbps	
Frame size	10 ms	20 ms	
Spreading factor	upto 512	64	
Number of channels/terminal	variable	1	
Downlink/uplink sharing	FDD/TDD	FDD	
Downlink modulation	QPSK	QPSK	
Uplink modulation	QPSK	OQPSK/Orthogonal	
Downlink FEC	r=1/2,1/3	$\mathrm{r}=1 / 2, \mathrm{~L}=9$	
	Convolutional or turbo	Convolutional code	
Uplink FEC	$\mathrm{r}=1 / 2,1 / 3$	$\mathrm{r}=1 / 3, \mathrm{~L}=9$	
	Convolutional or turbo	Convolutional code	
Voice encoding	Adaptive multirate ACELP	CELP at 9.6 kbps and	
	(4.75 kbps to 12.2 kbps)	14.4 kbps	
Traffic channels/RF channel	depends upon data rate	upto 63 in theory	

Example:

Raw instantaneous data rate on a single time slot $=22.8 \mathrm{kbps}$ (standard)
Type of modulation used in EDGE $=8$-PSK (standard)
Number of signal elements per bit $=3$ (As in 8-PSK)
Maximum raw instantaneous data rate $=3 \times 22.8 \mathrm{kbps}=\mathbf{6 8 . 4} \mathbf{~ k b p s}$ Ans.

University of Mumbai

Examination 2021 under Cluster 06
(Lead College: Vidyavardhini's College of Engg Tech)
Examinations Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016
Examination: TE Semester VI
Course Code: ELXDLO6024 and Course Name: Computer Organization and Architecture
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
	Which of the following Special purpose register holds the address of next instructions to be executed?
1.	Program Counter
Option A:	Option B:
Instruction Register	
Option C:	MAR
Option D:	Base Register
2.	Booth's Multiplier
Option A:	reduces the number of partial products
Option B:	increases the number of partial products
Option C:	multiplies the number of partial products
Option D:	divides the partial products
3.	Bias value for single precision and double precision representation is \&
Option A:	128,1024
Option B:	127,1023
Option C:	256,512
Option D:	32,64
4.	A set of microinstructions for a single machine instruction is called
Option A:	Program
Option B:	Command
Option C:	Micro program
Option D:	Micro command
5.	Full form of MFLOPS is
Option A:	Millions of Fixed Point Operations Per Second
Option B:	Millions of Floating Point Operations Per Second
Option C:	Millions of Floating Point Opcodes Per Second
Option D:	Millions of Flip/Flops Operations Per Second
6.	A micro-programmed control unit
Option A:	faster than a hard-wired control unit
Option B:	facilitates easy implementation of new instructions
Option C:	useful when very small programs are to be run
Option D:	usually refers to the control unit of microprocessor.

7.	How many 128 X 8 RAM chips are needed to provide a memory capacity of 2048 bytes?
Option A:	8
Option B:	16
Option C:	2
Option D:	4
8.	Which of the following is not a write policy to avoid Cache Coherence?
Option A:	Write through
Option B:	Write within
Option C:	Write back
Option D:	Buffered write
9.	Which algorithm chooses the page that has not been used for the longest period of time whenever the page required to be replaced?
Option A:	First in first out algorithm
Option B:	Additional reference bit algorithm
Option C:	Least recently used algorithm
Option D:	Counting based page replacement algorithm
10.	What are the five main components of a computer system
Option A:	CPU,CD-ROM, Mouse, Keyboard, Sound Card
Option B:	Memory, Video card, Monitor, Software, Hardware
Option C:	Modem, Keyboard, Word Processor, Printer, Screen
Option D:	CPU, Memory ,System bus ,Input, Output
11.	Cache memory works on the principle of
Option A:	Locality of Memory
Option B:	Locality of reference
Option C:	Locality of data
Option D:	Locality of reference and memory
12.	Hidden bus arbitration is feature of
Option A:	MOD BUS
Option B:	CAN BUS
Option C:	PCI BUS
Option D:	ISA BUS
13.	SIMD stands for
Option A:	Single information Multiple Design
Option B:	Single Instruction Multiple Data
Option C:	Single Instructions Multiple Design
Option D:	Single Information Multiple document
14.	Which of the following processor has a fixed length of instructions?
Option A:	CISC
Option B:	RISC
Option C:	EPIC
Option D:	Multi core
15.	The concept of pipelining is most effective performance if the tasks being performed in different stages
Option A:	Require different amount of time
Option B:	Require about the same amount of time

Option C:	Require different amount of time with time difference between any two tasks being same
Option D:	Require different amount with time difference between any two tasks being different
16.	The set of loosely connected computers are called as
Option A:	LAN
Option B:	WAN
Option C:	Workstation
Option D:	Cluster
17.	An instruction pipeline can be implemented by means of
Option A:	LIFO Buffer
Option B:	FIFO Buffer
Option C:	Stack
Option D:	Both LIFO Buffer and FIFO Buffer
18.	The Unit of data Exchange between Cache and Main Memory is known as
Option A:	Cache size
Option B:	Block size
Option C:	Page size
Option D:	Segment size
19.	Hazards due to resource conflict are called as ...
Option A:	Data Hazard
Option B:	Control Hazard
Option C:	Structural Hazard
Option D:	Both Data Hazard and Control Hazard
20.	The following sequence of virtual page numbers is encountered in the course of execution on a computer with virtual memory:342647132635123 Assume that a least recently used page replacement policy. Find out the Page Hit Ratio with main memory with Page capacity $n=4$. Assume that main memory is initially empty.
Option A:	0.22
Option B:	0.10
Option C:	0.20
Option D:	0.16

Q2 $\mathbf{2 0}$ Marks)	
A	Solve any Two 5 marks each
i.	Draw and explain instruction state diagram(without interrupt).
ii.	Explain different write policy methods.
iii.	Explain SRAM structure and working.
B	Solve any One
i.	Discuss system buses in detail. Highlight PCI bus and its operation in detail.
ii.	Discuss Hardwired and Micro-programmed Control unit in detail.
$\mathbf{Q 3}$	
$\mathbf{(2 0 ~ M a r k s) ~}$	
A	Solve any Two out of three
i.	Write short notes on GPU.
ii.	Discuss paging concept in short.
iii.	Discuss I/O handling techniques. (any two techniques)

B	Solve any One out of two
i.	Discuss parallel processing and pipelining in detail.
ii.	Explain Flynn's classification in detail with suitable diagrams.

University of Mumbai
Examination 2021 under Cluster 06
(Lead College: Vidyavardhini's College of Engg Tech)
Examination Commencing from June 01, 2021
Program: Electronics Engineering
Curriculum Scheme: Rev 2016
Examination: TE Semester VI
Course Code: ELXDLO6024 and Course Name: Computer Organization and Architecture Time: 2 hour

Max. Marks: 80
Q1:

Question Number	Correct Option (Enter either 'A' or ' B ' or 'C' or ' D ')
Q1.	A
Q2.	A
Q3.	B
Q4	C
Q5	B
Q6	B
Q7	B
Q8.	B
Q9.	C
Q10.	D
Q11.	B
Q12.	C
Q13.	B
Q14.	B
Q15.	B
Q16.	D
Q17.	B
Q18.	B
Q19.	C
Q20.	C

