K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai (An Autonomous Institute Affiliated to the University of Mumbai)

End Semester Exam

November – December 2021

B.Tech. (Information Technology)

Examination: SY - Semester III

Course Code: 1UITC302 and Course Name: Data Structures and Analysis

Duration: 03 Hours Max. Marks: 60

Instructions:

(1) All questions are compulsory.

(2) Draw neat diagrams wherever applicable.

(3) Assume suitable data, if necessary.

Ques.	Question	Max.	co	BT
No.		Marks		Level
Q1.	Solve any six questions out of eight:	12		
i)	Explain the necessary characteristics of an algorithm.	2	CO1	U
ii)	Write applications of Stack data structure.	2	CO2	U
iii)	Explain the need of Circular Queue.	2	CO2	U_
iv)	Explain different types of Linked Lists.	2	CO3	U
v)	Explain the Linked List best suitable to implement a photo viewer for	2	CO3	U
vi) vii) viii)	Consider the below Tree and identify its Height and Degree. P A B C Mention data structures used for BFS and DFS Graph traversal strategies. Explain the need of these strategies. Explain Divide and Conquer strategy with reference to Merge Sort.	2 2	CO4	U
Q2.	Solve any four questions out of six:	16		
i)	Compare static and dynamic data structures.	4	COI	AN
ii)	Write an algorithm to perform PUSH operation on Stack.	4	CO2	U
iii)	Sketch the process of insertion at front in a Circular Linked List.	4	CO ₃	Α
iv)	Explain Binary Search Trees.	4	CO4	()
v)	Sketch the Adjacency List and Adjacency Matrix for the below Graph: A 5 B 10	4	COS	A
vi)	Apply Insertion Sort on the elements 22, 37, 9, 76, 48, 3 and comment on its time complexity.	4	CO6	Λ

Q3.	Solve any two questions out of three:	1.7		
	Analyze the requirements to implement an application that asset	16	4	
i)	structure for the same. Comment on the best-case and worst-case time complexities in solving the problem using the identified data structure. Describe the Asymptotic Notation for its Upper and Lawren Popular and Lawren Po	8	COI	AN
ii)	expression $a + b * c + d / b + a * c + d$. Also calculate the rank of the expression.	8	CO2	A
iii)	Consider implementation of a multi-player computer game with player IDs 1, 2,, n. Apply suitable concepts of linked lists for adding a new player to the game and write an algorithm for the same. (Assume storing only the player ID to the list).	8	CO3	A
Q4.	Solve any two questions out of three:	+		_
	Apply the Rippy Top T	16	T	
	Apply the Binary Tree Traversal techniques on the below tree and find: a. Preorder traversal sequence b. Inorder traversal sequence c. Postorder traversal sequence			
i)	17 72 12 23 54 76 9 14 19 67	8	CO4	A
	Also write functions to implement Binary Tree Traversal.			
- 2	spanning tree. Show all intermediate steps.			
i)	B C A	8	CO5	A
i) h	Explain Hashing. Apply Division method and Truncation method to find ash values of the elements 22, 89, 15, 94, 31, 68, 23, 55, 86 considering ash table size = 10. Use and table			

,