K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

End Semester Exam

Nov 2021 - Dec 2021

B.Tech Program: Information Technology

Examination: TY Semester: V

Course Code: 1UITDLC5054 and Course Name: Advanced Data Structures and Algorithmic

Performance Analysis

Duration: 03 Hours Max. Marks: 60

Instructions:

- (1)All questions are compulsory.
- (2)Draw neat diagrams wherever applicable.
- (3)Assume suitable data, if necessary.

		Max. Marks	СО	BT level	
Q1	Solve any six questions out of eight:	12			
i)	Explain Method to analyse and measure the time complexity of an algorithm.	2	CO1	U	
ii)	Explain concept of Red-Black Tree with example.	2	CO2	U	
iii)	How to achieve O (n log n) time complexity in the worst case for quick sort.	e for 2		U	
iv)	Explain Optimal Merge Pattern with Example.	2	CO3	U	
v)	Define the knapsack problem. How to solve using dynamic programming.	em. How to solve using dynamic 2		U	
vi)	What do you mean by valid hit and spurious hit in the Rabin Karp algorithm for string matching?	2	CO5	U	
vii)	How does the Boyer Moore algorithm work?	2	CO5	U	
viii)	Describe NP Complete problem with example.		CO6	U	
Q.2	Solve any four questions out of six.	16			
i)	Solve the following recurrence relation using Master Method $T(n) = 4T (n/3) + n^2$	4 COI		Analyze	
ii)	Differentiate Topological Sorting vs Depth First Traversal (DFS).	4	CO2	Analyze	
iii)	Sort the sequence using Merge sort algorithm: 33, 22, 44, 08, 99, 88, 11		CO3	Apply	

iv)	How will you construct an optimal binary search tree? What are the advantages of Optimal binary search tree?					CO4	Apply
v)	Explain Naïve String Matching Algorithm. Give Example.					CO5	U
vi)	How does genetic algorithm work? Explain phases are considered in a genetic algorithm					CO6	Apply
Q.3	Solve any two questions out of three.					1 1-1	
i)	Solve the Following using Recurrence Tree $T(n) = T(n/2) + T(n/4) + T(n/8) + n$					COI	Analyze
ii)	Find the path of travelling salesperson problem of given Matrix.				8	CO4	Analyze
	0 10 15 20				٦١٥		
	5	0	9	10			- Laboratoria
	6	13	0	12			
	8	8	9	0			
W 2 02							
iii)	Find longest common subsequence of following strings X = ababcde Y = bacadb					CO5	Analyze
Q.4	Solve any two questions out of three.						
i)	Create Red-Black Tree 41,38,31,12,19,8				8	CO2	Analyze
ii)	Given Data N=4 p1, p2, p3, p4 = (100, 10, 15, 27) d1, d2, d3, d4 = 2, 1, 2, 1 Find feasible solutions using job sequencing with deadlines.					CO3	Analyze
iii)	Find a vertex-cover of maximum size in a given undirected graph				8	CO6	Analyze
	1 (2)	3	7			