K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22

(Autonomous College Affiliated to University of Mumbai)

(DE (-21) Feb- 2022

Program: B.Tech Extc

Examination: SY Semester: III

Course Code: 1UEX303 and Course Name: Electronic Devices and Circuits

Duration: 03 Hours Max. Marks: 60

Instructions:

(1)All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

(3)Assume suitable data, if necessary.

		Max. Marks	СО	BT level
Q 1	Solve any six questions out of eight	12		
i)	Illustrate Drain Characteristics of E-MOSFET with graph.	2	2	U
ii)	Derive for Transfer function of series coupling RC circuit.	2	2	U
iii)	Define diode current equation.	2	1	U
iv)	Illustrate ac equivalent model of MOSFET with circuit diagram.	2	1	U
v)	Define Channel Length Phenomenon in MOSFET.	2	1	U

	D. L. L. CAL MOGRETT. LD. MOGRETT		Τ.	
vi)	Draw symbol of N- MOSFET and P- MOSFET	2		U
vii)	For a MOSFET circuit, If expression for I_D is $I_D = K_n (V_{GS} - V_{to})^2$	2	1	U
	Then Derive for gm.			
viii)	Define differential mode gain and common mode gain.	2	2	U
Q.2	Solve any four questions out of six.	16		
i)	Illustrate transfer characteristic with various region of operation using graph and current equation.	4	1	U
ii)	Explain the working of E- MOSFET with constructional detail	4	1	U
iii)	Compare low and high frequency ac model of MOSFET.	4	3	AP
iv)	MOSFET can act as current source. Justify the statement	4	3	AP
v)	Analyze circuit in given figure to find DC voltages and current. V_{DD}	4	4	AN
	$R_1 = V_0$ V_0 $V_1 = R_2$ $V_{GS} = V_0$			
	Figure 1			
vi)	Compare Rectifier diode with Zener diode.	4	3	AP

Q.3	Solve any two questions out of three	16		
	Analyze effect of Miller's capacitance on frequency response of CS amplifier?	8	4	AN
ii)	The circuit in Figure is to be used as a simple audio amplifier. Design the circuit such that the lower corner frequency is $f_L = 50$ Hz. $R_D = 6.7 \text{ k}\Omega$ $R_C = \frac{10 \text{ k}\Omega}{8}$ Figure 2	8	5	AP
iii)	Determine the corner frequency and maximum gain asymptote of a MOSFET amplifier. For the circuit in Figure the parameters are: $R_S = 3.2 \text{ k}$, $R_D = 10 \text{ k}$, $R_L = 20 \text{ k}$, and $C_L = 10 \text{ pF}$. The transistor parameters are: $V_{TP} = -2 \text{ V}$, $K_P = 0.25 \text{ mA/V}^2$, and $\lambda = 0$. $I_{DQ} = 0.5 \text{ mA}$, $V_{SGQ} = 3.41 \text{ V}$, and $V_{SDQ} = 3.41 \text{ V}$.	8	4	AN
	$= \frac{3}{2} 200 k\Omega$ $= \frac{1}{2} R_D$ $= \frac{1}{2} C_L$ Figure 3			

Q.4	Solve any two questions out of three.	16		
i)	Design the dc bias of a MOSFET circuit to meet a set of specifications. The circuit configuration to be designed is shown in Figure. The quiescent Q-point values are to be $I_{DQ} = 0.25 \text{mA}$, $V_{DSQ} = 4 \text{V}$. The voltage across R_S should be $V_{RS} \sim 1 \text{ V}$. The current in the bias resistors should be approximately 20 μ A. A transistor with parameters of $k_n' = 80 \mu$ A/ V^2 , W/L = 4, and $V_{TN} = 1.2 \text{ V}$ is available.	8	5	AP
	R_1 V_{CS} V_{DS} V_{DS} V_{CS} V_{CS} V_{CS} V_{CS} V_{CS} V_{CS} V_{CS}			
	-5 V Figure 4			
ii)	Explain the terms diffusion current density. Calculate diffusion current density for given semiconductor. Consider silicon at T=300K. Assume the electron concentration varies linearly from n=10 ¹² cm ⁻³ to n=10 ¹⁶ cm ⁻³ over the distance from x=0 to x=3 μ m. Assume D_n =35cm ² /s.	8	1	U
iii)	Determine the small-signal voltage gain of a common-source circuit containing a source resistor. Consider the circuit in Figure. The transistor parameters are $V_{TN}=0.8~V,~K_n=1 mA~/V^2$ and $\lambda=0$.	8	4	AN

