K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22

(Autonomous College Affiliated to University of Mumbai)

End Semester Exam

Feb-2022

(B.Tech) Program: Electronics and Telecommunication

Examination: SY Semester: III

Course Code: 1UEXC304 Course Name: Electronic Instrumentation & Control system

Duration: 03 Hours Max. Marks: 60

Instructions:

(1)All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

(3)Assume suitable data, if necessary.

		Max. Marks	СО	BT level
Q1	Solve any six questions out of eight:	12	7.96	(14)
i)	Why calibration of instrument is important?	2	1	U
ii)	Define loop, self-loop, path gain, loop gain for SFG.	2	3,5	U
iii)	Define transfer function state its advantages and limitations	2	3,5	U
iv)	State the disadvantages of Hay's bridge.	2	1	U
v)	State Nyquist stability criterion	2	4,6	U
vi)	What is frequency response and list out the different frequency domain specifications?	2	4,6	U

vii)	Define a stable system.	2	3,5	U
viii)	Draw Schering bridge and write balanced condition for the same.	2	1, 2	U
Q.2	Solve any four questions out of six.	16		
)	Consider a system with open loop transfer function as $G(s)$ $H(s) = \frac{10}{s}$, obtain its polar plot.	4	4,6	AP
i)	Determine the stability of a system with characteristic equation. $S^5 + 4S^4 + 2S^3 + 8S^2 + S + 4 = 0$	4	3,5	AP
ii)	State the Bode Plot magnitude curve characteristics of a type 1 system.	4	4,6	AP
	$G(jw) = \frac{K_1}{jw(1+jwT_1)}$			
v)	Construct SFG of the system described by the following equations; where R is input & C is output and x1, x2, and x3 are the system nodes.	4	3,5	AP
	x1 = R + 7x1 + 2x2 + 5x3			
	x2 = -6x1 + 4x2 + 8x3			
	x3 = 3x1 - 9x2 + 6x3			
	C = 2x1 + x2 + 3x3			
7)	Compare temperature transducer thermistor and thermocouples based on principle, characteristics, and applications.	4	1	U
ri)	Derive the expression for the resistance using Wheatstone bridge for balanced condition.	4	1	U
Q.3	Solve any two questions out of three.	16		

//				
i)	Sketch the root locus for $G(s) = \frac{K}{s(s^2 + 6s + 12)}, H(s) = 1$	8	3,5	AP
ii)				
11)	Explain different static characteristics of an instrument.	8	1	U
iii)	Sketch the bode plot for the transfer function. $G(s) = \frac{1000}{s(1+0.1s)(1+0.001s)}$	8	4,6	AP
Q.4	Solve any two questions out of three.	16		
i)	Explain thermocouple with their types in details.	8	4,6	U
ii)	For a system with characteristics equation, i) $S^6 + 3S^5 + 4S^4 + 6S^3 + 5S^2 + 3S + 2 = 0$ ii) $S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0$ Examine stability.	8	3,5	AP
iii)	Using Mason's Formula, Find the T.F. H1 H2 H3 G5 G7 G8 G9 G10 H4 H5 H6	8	3,5	AP