K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

End Semester Exam

Nov - Dec 2021 (Held in March 2022)

Program: B.Tech.

Examination: FY Semester: I

Course Code: <u>1UBSC102</u> and Course Name: <u>Engineering Physics</u>

Duration:02 Hours

Max. Marks: 45

Instructions:

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

40		Max. Marks	СО	BT level			
Q1	Solve any 5 questions out of six.	15					
i)	State de Broglie hypothesis and explain it on the basis of Bohr's postulate.	3	1	2			
ii)	An electron has a speed of 900 m/s with an accuracy of 0.001%. Calculate the uncertainty in the position of the electron.	3	1	3			
iii)	Draw the following planes $(1\ 2\ 3)$, (110) , $(2\overline{3}1)$ in a cubic unit cell.	3	2	2			
iv)	Explain the effect of increasing doping level on Fermi level in n-type semiconductor and p-type semiconductor?	3	3	2			
v)	The resistivity of intrinsic InSb at room temperature is 2×10^{-4} ohm-cm. If the mobility of electron is $6 \text{ m}^2/\text{V}$ -sec and mobility of hole is $0.2 \text{ m}^2/\text{V}$ -sec, calculate its intrinsic carrier density.	3	3	3			
vi)	How can we use wedge shaped film to determine diameter of a thin wire?	3	4	2			

Q.2	Solve any three questions out of four.	15	Lamb (4.35
i)	Using Heisenberg's Uncertainty Principle, show that electron cannot exist within the nucleus.	5	1	2
ii)	A bullet of mass 40 gm and an electron both travel with the velocity of 1100 m/s. What wavelengths can be associated with them? Why the wave nature of bullet can not be revealed using diffraction effect?	5	1	3
iii)	How a p-n junction diode can be used to generate potential difference in a photovoltaic solar cell?	5	3	2
iv)	In a Hall effect experiment, a potential difference of 4.5µV is developed across a foil of zinc of thickness 0.02 mm, when a current of 1.5 A is flowing in a direction perpendicular to applied magnetic field of 2 tesla. Calculate a) Hall coefficient for zinc b) concentration of electrons.	5	3	3
Q.3	Solve any three questions out of four.	15		
i)	Derive an expression for inter-planar spacing for the planes having (h k l) as the miller indices.	5	2	2
ii)	X-rays of wavelength 1.5418 A ⁰ are diffracted by (111) planes in a crystal at an angle of 30 ⁰ in the first order. Calculate the lattice constant of the cubic unit cell.	5	2	3
iii)	Derive the relation between angle of wedge and fringe-width in wedge shaped film experiment.	5	4	2
iv)	A Newton's ring setup is used with a source emitting two wavelengths $\lambda_1 = 6000 \text{ A}^0$ and $\lambda_2 = 4500 \text{ A}^0$. The n th dark ring due to λ_1 coincides with $(n+1)^{th}$ dark ring due to λ_2 . If the radius of curvature of the lens is 90 cm, find the diameter of the n th dark ring of 6000 A^0 .	5	4	3