K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22

(Autonomous College Affiliated to University of Mumbai)

End Semester Exam

April - May 2022

B.Tech Program: Computer Engineering

Examination: TY, Semester: VI

Course Code: <u>1UCEDLC6051</u> and Course Name: <u>Quantitative Analysis</u>

Duration: 03 Hours Max. Marks: 60

Instructions:

(1) All questions are compulsory.

- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

			Max. Mark s	СО	BT Level
Q. 1	Solve any six questions o	out of eight:	12		
i)	What are the Qualitative of	2	COI	U	
ii)	What is sampling? Enli sampling.	2	CO2	U	
	From the given table, cal (MSE) value.	culate the mean square error Predicted value			
	Actual Value	2	CO3	A	
iii)	100				
	150	170		Jan	
	200	220			
	250	260			

iv)	Given $b_{yx} = 2.7$ and $b_{xy} = 0.3$. Calculate the value of coefficient of correlation (r).	2	CO3	A
v)	If a company is manufacturing a product from 2001 to 2010 and earning the profits (in crores of rupees) as 10, 15, 13, 17, 12, 16, 17, 21, 20, 18 for the last 10 years respectively. Classify the given data.	2	CO1	A
vi)	When does multicollinearity occur in multiple regression?	2	CO4	U
vii)	Enlist the properties of point estimator, Describe any one.	2	CO5	U
viii)	A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 20%. State the null and alternative hypotheses. For the given problem, formulate the null and alternative hypothesis only. For the given problem, formulate the null and alternative hypothesis only.	2	C06	A
Q. 2	Solve any four questions out of six:	16		
i)	The following figures relate to the cost of construction of a house in Delhi: Item Expenditure Cement 20% Steel 15% Bricks 10% Timber 18% Labour 20% Miscellaneous 17% Draw a pie chart for the data.	4	COI	A
ii)	Compare Probability Sampling and Non probability sampling.	4	CO2	U
iii)	Obtain the two lines of regression from the following data and estimate the blood pressure when are is 50 years. Can we also estimate the blood pressure of a		CO3	A,A

	person aged 20 years on the basis of this regression equation? Age (in years) 56 42 72 39 63 47 52 49 40 42 68 60 Years) 8 127 112 140 118 129 116 130 125 115 120 135 133 Pressure 127 112 140 118 129 116 130 125 115 120 135 133			
iv)	In a Trivariate population of random variables X1,X2,X3. The following results about mean, S.D and correlation coefficient were found in a sample of size 20, Find the regression equation of X1 on X2 and X3 $ X_1 = 40, X_2 = 50, X_3 = 60 $ $ S I = 5, S_2 = 4, S_3 = 5 $ $ \delta_{12} = 0.6, \delta_{13} = 0.5, \delta_{23} = 0.4 $	4	CO4	A
v)	An unfair coin is flipped 100 times and 61 heads are observed. The coin either has probability 1/3,1/2 or 2/3 of flipping of head each time it is flipped.find the maximum likelihood estimation.	4	CO5	A
vii)	Explain in brief: Type I and Type II errors in hypothesis.	4	C06	U
Q. 3	Solve any two questions out of three:	16		
i)	Draw a suitable representative diagram for the following data. Year Sales ('00) Gross Profit ('00) Net Profit ('00)	8	CO1	A,An
ii)	In a correlation study, the following values are obtained:	8	CO3	A,Aı

iii)	Derive parame	the lik ters.	eliho	od e	quatio	on fo	or es	tima	ating	the	8	CO5	A
Q. 4	Solve any two questions out of three:								16				
	For the SRSW(followi OR samp	ing poles o	opula f size	ation,	con	sider	all	possil	ole			
	i	1		2	3	T	4	1	5				
	Yi	5		8	3		11		9				
i)	 a) Show that ȳ is an unbiased estimator of Ȳ b) Show that s² is an unbiased estimator of S² c) Calculate the sampling variance of ȳ and show that it agrees with the formula (N-n)/(nN) S² d) Verify that Var_{SRSWR} (ȳ) ≥ Var_{SRSWOR} (ȳ) 						w	8	CO2	A,Aı			
	-								de Blog	4		وروناها	
	Fit a reg the followeights moved, a	ression owing do	equat ata o	tion tof a	o esti	mate ort dista	β ₀ , β	3 ₁ , a	nd β_2 on the value of the second	10			
ii)	Fit a reg the followeights moved, a	ression owing do	equat ata o	tion tof a	o esti	mate ort dista	β ₀ , β	3 ₁ , a	nd β_2 on the value of the second	10	0	COA	
ii)	Fit a reg the followeights moved, a	ression owing do of 6 s and the d	equat ata o hipm lamag	tion to f a sents, ge of	transp the	mate oort dista s that	β ₀ , β comp inces was	3 ₁ , a any the incu	nd β_2 on the value of the second	10	8	CO4	A
ii)	Fit a reg the followeights moved, a	ression owing do of 6 s and the do Weight X ₁ (1000 kg) istance X ₂	equata o hipm lamag	tion tof a sents, ge of	transp the good:	mate oort dista s that	β ₀ , βcompunces was	B ₁ , a pany the incu	nd β ₂ on the surred.	10	8	CO4	A
ii)	Fit a reg the followeights moved, a	ression owing do of 6 s and the do Weight X ₁ (1000 kg) istance X ₂ (100 km) Damage Y (Rs.)	equate ata of hipm lamage 4.0	tion to f a sents, ge of	the good:	mate port (dista s that	β ₀ , fcompunces was	3 ₁ , apany the incu	nd β ₂ on the surred.	ne re	8	CO4	A