K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

End Semester Exam

April - May 2021-22 held in July 2022

Program: B.Tech

Examination: FY Semester: II

Course Code: 1UBSC201 and Course Name: Engineering Mathematics II Duration: 03 Hours

Max. Marks: 60

Instructions:

Q.2

i)

ii)

Solve any four questions out of six.

Solve $(D^2 + D - 6)y = e^{2x} \sin 3x$

Solve $(e^y + 1)\cos x \, dx + e^y \sin x \, dy = 0$.

(1) All questions are compulsory.

(2) Draw neat diagrams wherever applicable. (3) Assume suitable data, if necessary.

						Max. Marks	СО	BT level
Solve any six questions out of eight:						12		
Determine whether the differential equation given below is exact or not? $(\tan y + x)dx + (x \sec^2 y - 3y)dy = 0$.							CO1	3
Find the complete solution of the differential equation $(D^4 + 2D^2 + 1)y = 0.$							C02	3
Find the particular integral of the differential equation $(D^2 + 4)y = \cos 2x.$						02	C02	3
Prove that $\beta(m, m)$. $\beta(m + \frac{1}{2}, m + \frac{1}{2}) = \frac{\pi}{m}$. 2^{1-4m}							C03	3
Find the length of the arc of the curve $y = \log \sec x$ from $x = 0$ to $x = \pi/3$.							C03	3
Evaluate $\int_0^1 \int_0^{\sqrt{a^2-x^2}} xy \ dy dx$							C04	3
Evaluate $\int_0^{\pi/2} \int_0^{a(1+\sin\theta)} r^2 \cos\theta \ dr d\theta$							C04	3
Given the following values of e^x , evaluate $\int_0^{2.5} e^x dx$, using Trapezoidal rule.								3
0.5	1	1.5	2	2.5				
1.65	2.72	4.48	7.39	12.18	2.		4	
	1.65	1.65 2.72	1.65 2.72 4.48	1.65 2.72 4.48 7.39	1.65 2.72 4.48 7.39 12.18	1.65 2.72 4.48 7.39 12.18	1.65 2.72 4.48 7.39 12.18	1.65 2.72 4.48 7.39 12.18

3

3

C01

C02

16

04

04

iii)	Prove that $\int_0^{2\pi} \sin^2 \theta (1 + \cos \theta)^4 d\theta = \frac{21\pi}{8}$	04	C03	3
iv)	Assuming the validity of differentiation under the integral sign prove that $\int_0^\infty \frac{e^{-\alpha x} \sin x}{x} dx = \cot^{-1} x$.	04	C03	3
v)	Evaluate $\iint x(x-y) dxdy$ over the region R which is triangle whose vertices are $(0,0), (1,2), (0,4)$.	04	C04	3
vi)	Using Euler's modified method find the approximate value of y when $\frac{dy}{dx} = \log_e(x+y)$ and $y(1) = 2$, at $x = 1.2$ taking $h = 0.2$.	04	C06	3
Q.3	Solve any two questions out of three.	16		
i)	Solve $y(xy + e^x)dx - e^x dy = 0$	08	CO1	3
ii)	Solve by method of variation of parameters, $\frac{d^2y}{dx^2} + y = \sec x \tan x$	08	CO2	3
iii)	Change the order of integration and evaluate $\int_0^1 \int_x^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dx dy$	08	CO4	3
Q.4	Solve any two questions out of three.	16	1-5-11	
i)	Prove that $\int_0^1 \sqrt{1 - \sqrt{x}} dx \int_0^{1/2} \sqrt{2y - 4y^2} dy = \frac{\pi}{30}$	08	СОЗ	3
ii)	Evaluate $\iint x^2 dxdy$ over the region R in the first quadrant bounded by $xy = 16$, $y = x$, $y = 0$ and $x = 8$.	08	CO4	3
iii)	Using Runge - Kutta method of 4^{th} order find the value of y satisfying the equation $\frac{dy}{dx} = \frac{(y^2 - x^2)}{(y^2 + x^2)}$, $y(0) = 1$, for $x = 0.4$ taking $h = 0.2$.	08	CO6	3