K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2022

Program: B.Tech Electronics And Telecommunication

Examination: SY Semester: III

Course Code: EXC303 and Course Name: Electronic Devices and Circuits

Duration: 2.5 Hours

Max. Marks: 60

Instructions:

- (1)All questions are compulsory.
- (2)Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

2 2 A	BA 200 Bris edillings A	Max. Marks	CO	BT level
Q1	Solve any six questions out of eight:	12		
i)	Explain input characteristic of MOSFET.	2	CO3	U
ii)	Compare I/V characteristic of rectifier diode and and Zener diode.	2	COI	Ap
iii)	State advantages of Multistage Amplifier	2	CO2	Ap
iv)	Explain limitation of self bias BJT circuit.	2	CO4	U
v)	Explain hybrid model for BJT.	2	CO3	U
vi)	Define gain of Differential amplifier.	2	CO5	U
vii)	Compare Class A and Class AB amplifier.	2	CO6	Ap

K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

viii)	Explain Miller Effect.	2		CO3	Ap	
Q.2	Solve any four questions out of six.					
i)	Explain the construction of MOSFET			CO1	U	
ii)	For a self bias circuit for BJT perform dc analysis.	4		CO2	An	
iii)	"At high frequency ac equivalent circuit of MOSFET is modified". Comment.	4		CO3	An	
iv)	Derive for Voltage gain Av of CE amplifier (Voltage divider network).	4		CO4	Ap	
v)	Explain the Limitation of Class A amplifier and suggest a solution.			CO5	Ap	
vi)	Appraise with the help of circuit diagram, how differential pair rejects ripple in the circuit whereas other amplifiers fails to do the same			CO6	Ap	
Q.3	Solve any two questions out of three.	16				
	$R = 5 k\Omega$ $120 V$ $50 V$ $10 k\Omega$	8		COI	Ap	
4 a	For the circuit shown find: 1. The out put voltage, 2. Voltage drop across series resistance, 3. Current through Zener Diode					

K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

ii)	Explain the working of Class B amplifier.	8		CO2	U
iii)	Draw the circuit diagram and explain operation of two transistor current source. State its applications	8		CO4	Ap
Q.4	Solve any two questions out of three.	16			
i)	$(a) Z_{i}.$ $(b) Z_{o}.$ $(c) A_{v}.$ $(d) A_{i}.$ I_{i} $h_{fe} = 120$ $h_{ie} = 1.175 \text{ k}\Omega$ $h_{oe} = 20 \mu\text{A/V}$	8		CO5	Ap
i)	The fixed-bias configuration had an operating point defined by VGSQ = -2 V and IDQ = 5.625 mA, with IDSS = 10 mA and VP = -8 V. The network is redrawn as F ig. with an applied signal V i The value of yos is provided as 40 μS. a. Determine g m . b. Find r d . c. Determine Z i . d. Calculate Z o . e. Determine the voltage gain A v	8		CO3	Ap

K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

	φ20	v monthons	7 26 3 4		
	$R_D \ge 2$	Cα			
		DSS = 10 mA V _P = -8 V	the specie	i i i i i i i i i i i i i i i i i i i	
	$V_i = \frac{R_G}{Z_i} \left\{ \frac{1 \text{ M}\Omega}{2 \text{ V}} \right\} $	intiferiore V			
	+	Section of the sectio			
iii)	Compare differential pair E-MOS MOSFET amplifier on voltage gain	FET with n criteria.	8	CO6	U