K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Code: EXC503 Subject Name: Discrete Time Signal Processing Date:07/12/22

Nov – Dec 2022 B.Tech Program: Electronics And Telecommunication

Course Code: EXC503 and Course Name: Discrete Time Signal Processing
Duration: 2.5 Hours

Examination: TY Semester: V

Course Name: Discrete Time Signal Processing

Max. Marks: 60

Instructions:

(1)All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

(3) Assume suitable data, if necessary.

Q. No.	Question	Max.	СО	ВТ
		Marks		Level
Q1	Solve any six questions out of eight:	12		
i)	Classify given FIR filter impulse responses as minimum, maximum or mixed phase system. $H(Z) = \frac{\left(Z - \frac{1}{2}\right)\left(Z - \frac{1}{4}\right)}{\left(Z - \frac{1}{3}\right)\left(Z - \frac{1}{5}\right)}$	02	CO1	U
ii)	Compare DTFT and DFT.	02	CO2	U
iii)	What are the advantages of digital filter over analog filter?	02	CO3	U
iv)	Write the equations of Hamming window and Rectangular window.	02	CO4	U
v)	What is the effects of aliasing? How it is reduced?	02	CO5	U
vi)	List the various applications of Digital Signal processing.	02	CO6	U
vii)	Find circular convolution of sequence, $x(n) = \{1,2,3,4\}$ and $h(n) = \{2,1,2,1\}$	02	CO2	Ap
viii)	Find the digital transfer function H(z) by using impulse invariant method for the analog transfer function. H(s) = $\frac{1}{s+1}$ Assume T = 1sec	02	CO3	Ap
Q.2	Solve any four questions out of six.	16		*
i)	FIR filter is described by difference equation $y(n) = x(n) + x(n-4)$. Compute and sketch magnitude response.	04	CO1	Е
ii)	Compute IDFT of $X(k) = \{10, -2+2j, -2, -2-2j\}$ using FFT algorithms.	04	CO2	Е

K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Su	ubject (Code: EXC503 Subject Name: Discrete Time Signal Processing	Da	ite:07/12/	/22
	iii)	Show a mapping from S plane to Z Plane using Bilinear Transformation Technique.	04	CO3	U
	iv)	Differentiate FIR and IIR filter.	04	CO4	U
	v)	Explain the quantization effects due to truncation and rounding with example.	04	CO5	U
	vi)	Explain application of DSP processor in ECG signal analysis.	04	CO6	U
	Q.3	Solve any two questions out of three.	16		
	i)	A two pole low pass filter has the system function $H(Z) = \frac{b_0}{(1-pZ^{-1})^2}$ Determine the values b_0 and p such that the frequency response $H(\omega)$ satisfies the condition $H(0) = 1$ and $\left H\left(\frac{\pi}{4}\right)\right ^2 = \frac{1}{2}$	08	CO1	U
	ii)	An 8 point sequence is given by $x(n) = \{2,1,2,1,1,2,1,2\}$. Compute 8 point DFT of $x(n)$ by DIT FFT algorithm. Show the calculations for all the stages.	08	CO3	Ap
	iii)	Sketch the frequency response and identify the following filter based on their passband. $h(n) = (0.5)^n u(n)$	08	CO5	U
	Q.4	Solve any two questions out of three.	16		
	i)	Explain and prove cyclic property of Twiddle Factor. Determine the matrix of Twiddle Factor for 4 point.	08	CO2	Ap.
	ii)	Design a linear phase FIR high pass filter using Hamming window with cut-off frequency $\omega c = 0.8 \pi$ rad/samples and N = 7.	08	CO4	Cr
	iii)	What is DTMF (dual tone multifrequency frequency)? Explain how it works?	08	CO6	U