K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Code: ITDLC5054 Performance Analysis

Subject Name: Advanced Data Structures and Algorithmic

Date: 12/12/2022

Nov - Dec 2022

B.Tech Program: Information Technology Examination: TY Semester: V Course Code: ITDLC5054 and

Course Name: Advanced Data Structures and Algorithmic Performance Analysis

Duration: 2.5 Hours

Max. Marks: 60

Instructions:

(1) All questions are compulsory.

(2) Draw neat diagrams wherever applicable.

		Max. Marks	СО	BT level
Q 1	Solve any six questions out of eight:	12		
i)	Explain Theta Notation (@-notation) with graph.	2	CO1	U
ii)	Explain B+ Tree with Example.	2	CO2	u U
iii)	Explain the three parts of divide and conquer approach.	2	CO3	u e
iv)	Explain the time complexity of optimal merge pattern.	2	CO3	U
v)	Explain the difference between single pair shortest path and all pair shortest path problem.	2	CO4	U
vi)	Explain optimal binary search tree explain with example.	. 2	CO4	U
vii)	Explain which one is better: KMP algorithm or Boyer-Moore algorithm.	2	CO5	U
viii)	Explain the difference between accuracy and approximation?	2	CO6	U
Q.2	Solve any four questions out of six.	16	3	
)	Solve the equation by Substitution Method to identify the running time.	4	CO1	A
	$T(n) = T\left(\frac{n}{2}\right) + n$			

K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Code: ITDLC5054

Subject Name: Advanced Data Structures and Algorithmic

Performance Analysis

Date: 12/12/2022

i)	Sketch a RED BLACK Tree by inserting following sequence number 8, 18, 5, 15, 17, 25, 40, 80	4 A sensit	CO2	A
iii)	Solve to find max and min from the sequence 33, 11, 44, 55, 66, 22 using divide and conquer approach.	4	CO3	A
iv)	Demonstrate Matrix Chain Multiplication algorithm with the help of suitable example.	4	CO4	A
v)	For string matching, working module q = 11, demonstrate how many spurious hits does the Rabin-Karp matcher encounters in Text T = 31415926535	4	CO5	A
vi)	Demonstrate the difference between NP hard and NP complete problem.	4	CO6	A
Q.3	Solve any two questions out of three.	16	an though	qxII - (
i)	Solve following recurrence relation using Master's theorem to identify the asymptotic bound on T- $T(n) = 3T(n/2) + n^2$	8	CO1	U
ii)	Demonstrate and find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach. Consider- n = 4 w = 5 kg (w1, w2, w3, w4) = (2, 3, 4, 5) (b1, b2, b3, b4) = (3, 4, 5, 6)	8	CO4	A
iii)	Solve to find the longest common subsequence for strings X = BACDB and Y = BDCB.	8	CO5	A
Q.4	Solve any two questions out of three.	16	34 10,200 22.18	emit

K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Code: ITDLC5054
Performance Analysis

Subject Name: Advanced Data Structures and Algorithmic

erformance Analysis Date: 12/12/2022

i)	Solve to find the number of different topological orderings possible for the given graph:				8	CO2	A			
	C									
ii)	Given the jobs, their deadlines and associated profits as shown						8	CO3	A	
	Jobs	J4	J1	J3	J2	J5	J6			
	Deadlines	2	5	3	3	4	2			
	Profits	300	200	190	180	120	100			
	Solve the following questions- Write the optimal schedule that gives maximum profit. Are all the jobs completed in the optimal schedule? What is the maximum earned profit?									
iii)	Solve to find vertex cover of this graph, the set of edges of the given graph is – {(1,6),(1,2),(1,4),(2,3),(2,4),(6,7),(4,7),(7,8),(3,8),(3,5),(8,5)}					8	CO6	A		
									*	
