## K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai (An Autonomous Institute Permanently Affiliated to the University of Mumbai)

## **End Semester Exam**

November – December 2022

## M.Tech. (Artificial Intelligence)

Examination: FY - Semester I

Course Code: PCEC101 Course Name: Building Blocks of Artificial Intelligence

Date: February 22, 2023 Duration: 2.5 Hours Max. Marks: 60

Max.

## Instructions:

Ques.

- (1) All questions are compulsory.
- (2) Draw neat diagrams wherever applicable.
- (3) Assume suitable data, if necessary.

| No.   | Question                                                                                                                                                                                                                              | Marks | СО  | Level |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-------|
| Q1.   | Solve any six questions out of eight:                                                                                                                                                                                                 | 12    |     |       |
| i)    | Explain Hill Climbing.                                                                                                                                                                                                                | 2     | CO1 | U     |
| ii)   | Explain Supervised and Unsupervised Learning.                                                                                                                                                                                         | 2     | CO2 | U     |
| iii)  | State the role of Bias and Learning Rate in Neural Networks.                                                                                                                                                                          | 2     | CO3 | U     |
| iv)   | Argue why weights are modified in Neural Networks.                                                                                                                                                                                    | 2     | CO3 | U     |
| v)    | Explain Crossover and Mutation in Genetic Algorithms.                                                                                                                                                                                 | 2     | CO4 | U     |
| vi)   | Explain Exploration versus Exploitation.                                                                                                                                                                                              | 2     | CO4 | U     |
| vii)  | Explain Triangular Membership Function.                                                                                                                                                                                               | 2     | CO5 | U     |
| viii) | Explain Sequential and Auxiliary Hybrid Systems.                                                                                                                                                                                      | 2     | CO6 | U     |
| Q2.   | Solve any four questions out of six:                                                                                                                                                                                                  | 16    |     |       |
| i)    | Explain the applications of AI in Agriculture.                                                                                                                                                                                        | 4     | COI | U     |
| ii)   | Differentiate Soft and Hard Computing.                                                                                                                                                                                                | 4     | CO2 | U     |
| iii)  | Differentiate Case Updating and Epoch Learning.                                                                                                                                                                                       | 4     | CO3 | U     |
| iv)   | Explain different encoding methods in Genetic Algorithms. Apply a suitable encoding method for solving Knapsack problem.                                                                                                              | 4     | CO4 | A     |
| v)    | Assume suitable fuzzy sets and apply different fuzzy operations on them.                                                                                                                                                              | 4     | CO5 | A     |
| vi)   | Explain nature of real-world applications for using Genetic Algorithms and Neural Networks.                                                                                                                                           | 4     | CO6 | U     |
| 0.2   |                                                                                                                                                                                                                                       | 16    |     |       |
| Q3.   | Solve any two questions out of three:                                                                                                                                                                                                 | 10    |     |       |
| i)    | Consider the following graph available with a user:   A  B  C  B  C  E                                                                                                                                                                | 8     | COI | A     |
|       | Apply Breadth-First Search algorithm to obtain the Graph's traversal sequence with node D as the source. Show all steps.  For the below use cases, state whether to use supervised or unsupervised learning algorithm and justify it: |       |     |       |
| ii)   | <ul><li>a. Recommend news articles to a user based on previously read articles</li><li>b. Segment customers to better assign marketing campaigns using customer characteristics</li></ul>                                             | 8     | CO2 | AN    |

|               | Consider a fully-connected multilayer feed-forward neural network with                                                                                                                                                                                                                                                                                                                                                  |    |         |     |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|-----|
| iii)          | architecture 3-2-1. Let the learning rate be 0.7. Assume weights and bias as                                                                                                                                                                                                                                                                                                                                            |    |         |     |
|               | mentioned below:                                                                                                                                                                                                                                                                                                                                                                                                        |    |         |     |
|               | w14 w15 w24 w25 w34 w35 w46 w56 01 02 03                                                                                                                                                                                                                                                                                                                                                                                |    |         |     |
|               | 0.2 -0.3 0.4 0.1 -0.5 0.2 -0.3 -0.2 -0.4 0.2 0.1                                                                                                                                                                                                                                                                                                                                                                        | 8  | CO3     | A   |
|               | Consider a training tuple, $X = (1, 1, 0)$ , whose class label is 1. Calculate the net                                                                                                                                                                                                                                                                                                                                  |    |         |     |
|               | input, output and error of each unit in hidden and output layer once the tuple is                                                                                                                                                                                                                                                                                                                                       |    |         |     |
|               | fed into the network. Also show updated values of weights and bias after first                                                                                                                                                                                                                                                                                                                                          |    |         |     |
|               | iteration calculating the error.                                                                                                                                                                                                                                                                                                                                                                                        | 77 |         |     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                         |    |         |     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                         |    |         |     |
| Q4.           | Solve any two questions out of three:                                                                                                                                                                                                                                                                                                                                                                                   | 16 |         |     |
| <b>Q4.</b> i) | Solve any two questions out of three:  Apply Genetic Algorithm for solving Traveling Salesman Problem.                                                                                                                                                                                                                                                                                                                  | 16 | CO4     | A   |
|               | Apply Genetic Algorithm for solving Traveling Salesman Problem.  For fuzzy relations A and B defined as follows:                                                                                                                                                                                                                                                                                                        |    | CO4     | A   |
| i)            | Apply Genetic Algorithm for solving Traveling Salesman Problem.  For fuzzy relations A and B defined as follows:                                                                                                                                                                                                                                                                                                        |    | CO4 CO5 | A   |
|               | Apply Genetic Algorithm for solving Traveling Salesman Problem. For fuzzy relations $\tilde{A}$ and $\tilde{B}$ defined as follows: $\tilde{A} = \begin{bmatrix} 0.2 & 0.4 & 0 \\ 0.6 & 0.3 & 0.1 \end{bmatrix} \qquad \tilde{B} = \begin{bmatrix} 0.3 & 0.5 & 0 \\ 0.2 & 1 & 0.6 \\ 0.8 & 0 & 0.4 \end{bmatrix}$                                                                                                       | 8  |         | A   |
| i)            | Apply Genetic Algorithm for solving Traveling Salesman Problem. For fuzzy relations $\tilde{A}$ and $\tilde{B}$ defined as follows: $\tilde{A} = \begin{bmatrix} 0.2 & 0.4 & 0 \\ 0.6 & 0.3 & 0.1 \end{bmatrix} \qquad \tilde{B} = \begin{bmatrix} 0.3 & 0.5 & 0 \\ 0.2 & 1 & 0.6 \\ 0.8 & 0 & 0.4 \end{bmatrix}$ Compute the max-min composition.                                                                      | 8  |         | A   |
| i)            | Apply Genetic Algorithm for solving Traveling Salesman Problem. For fuzzy relations $\tilde{A}$ and $\tilde{B}$ defined as follows: $\tilde{A} = \begin{bmatrix} 0.2 & 0.4 & 0 \\ 0.6 & 0.3 & 0.1 \end{bmatrix} \qquad \tilde{B} = \begin{bmatrix} 0.3 & 0.5 & 0 \\ 0.2 & 1 & 0.6 \\ 0.8 & 0 & 0.4 \end{bmatrix}$ Compute the max-min composition.  Apply hybrid soft computing method of Genetic Algorithms and Neural | 8  | CO5     | A   |
| i)            | Apply Genetic Algorithm for solving Traveling Salesman Problem. For fuzzy relations $\tilde{A}$ and $\tilde{B}$ defined as follows: $\tilde{A} = \begin{bmatrix} 0.2 & 0.4 & 0 \\ 0.6 & 0.3 & 0.1 \end{bmatrix} \qquad \tilde{B} = \begin{bmatrix} 0.3 & 0.5 & 0 \\ 0.2 & 1 & 0.6 \\ 0.8 & 0 & 0.4 \end{bmatrix}$ Compute the max-min composition.                                                                      | 8  |         | A A |

\*\*\*\*\*\*

1