K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

April - May 2023

(B.Tech.) Program: B.Tech. (Electronic and Telecommunication) Scheme: <u>II</u>

Examination: SY Semester: IV

Course Code: EXC401 and Course Name: Applications of Mathematics in Engineering-II

Max. Marks: 60 Duration: 2.5 Hours Date of Exam: 13th May, 2023

I)All	questions: questions are compulsory. aw neat diagrams wherever applicable.	and g		V ⁰			
3)Ass	sume suitable data, if necessary.		Max. Marks	СО	BT		
20	C.:.ht		12				
21	Solve any six questions out of eight:		2	1	Ар		
)	Evaluate $\int_0^{1+i} z^2 dz$ along the line $y = x$.	133	100				
ii)	Is $W = \{(a, 0, 0)/a \in R\}$ a subspace of R^3 ?	2	4	Ар			
iii)	State the value classes of a quadratic form.	er on the unitarial alignment of 3					
iv)	Find the extremal of $\int_{x_1}^{x_2} (1 + x^2 y') y' dx$		2	6	Ар		
v)	Evaluate $\int_C \left(\frac{z+2}{(z-3)(z-4)}\right) dz$ where c is the circle $ z =$	2	1	Ар			
V)	Evaluate $\int_C (\overline{(z-3)(z-4)})^{1/2}$	2	2	Ар			
vi)	"Both the coefficients of regression for the given date	a always have					
vii	same sign." Justify your answer. "Can we have a Poisson distrib	2	3	Ар			
	4 and variance 5?	2	3	Ар			
vii	ii) If Probability density function of a continuous rando $(x) = \begin{cases} kx^2(1-x^3), 0 \le x \le 1 \\ 0, \text{ otherwise} \end{cases}$, find the value of $x \le 0.5$).	$k \text{ and } P(0 \le$					
-			16				
i)	Solve any four questions out of six. Using Cauchy Residue theorem evaluate $\int_C \frac{z^2}{(z-1)^2(z-2)}$	$\frac{1}{2}$ dz where C is	4	1	Ар		
	the circle $ z = 2.5$.	Verticonsuca (E.)	OS JONES	TE T			
ii	A discrete random variable has the probability density below.	function given	4	3	Ар		

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

April – May 2023

(B.Tech.) Program: B.Tech. (Electronic and Telecommunication) Scheme: II

Examination: SY Semester: IV

Course Code: <u>UEXC401</u> and Course Name: <u>Applications of Mathematics in Engineering-II</u>

Date of Exam: 13th May, 2023 Duration: 2.5 Hours Max. Marks: 60

		X	-2	-1		0		1	2		3						
	P(X	(=x)	0.2	k		0.1		2k	0	.1	2k						
	Find	k, mean	n and	varian	ce.			THE			to a second	49.1					
i)	Find	a vector	ortho	ogonal	to bot	th $u =$	(-6	,4 ,2)	, v =	(3,1,5	5).	(GL)Dejr	4	4	Ар		
iv)	Fit a first degree curve to the following data												4	2	Ар		
	X 10 12 15 23 20																
		Υ	30.0	14	1	7	23		25	- 1	21						
*	Bue	tions	4 2	Vio	ne c	on e	cige	no.3		0,69	dulk a				-		
2.3		any tw											16				
)	Calculate the coefficient of correlation for the following data											8	2	Ар			
	X	28	45	40	38	35	33	40	32	36	33						
	Y	23	34	33	34	30	26	28	31	36	35						
						1						_					
:)										8	1	Ap					
i)	Find all possible Laurent's expansions of the function $f(z) = \frac{1}{z^2(z-1)(z+2)}$ about $z = 0$.											-					
	$z^2(z-$	-1)(z+2)	abou	Il z =	U.			10 B 0	19				1 2 1 5				
iii)	Redu	ice the f	follow	ing qu	adrati	ic form	to ca	anonic	al forn	n. Als	o find	its rank,	8	5	Ap		
	Reduce the following quadratic form to canonical form. Also find its rank, index and signature. $3x_1^2 + 5x_2^2 + 3x_3^2 - 2x_1x_2 - 2x_2x_3 + 2x_3x_1$.																
Q.4	Solve any two questions out of three.							16									
i)	If X is a normal variate with mean 10 and standard deviation 4, find (i) $P(X-14 < 1)$ (ii) $P(5 \le X \le 18)$ (iii) $P(X \le 12)$										8	3	Ар				
ii)	Let	R ³ hav	e the	Euclie	lean	inner	produ	ict. U	se the	Grar	n-Schr	nidt	8 4 Ap				
	proc	ess to 1	transf	form th	ne ba	sis {u	$u_{1}, u_{2},$	<i>u</i> ₃ } ii	nto ort	hono	rmal b						
	where $u_1 = (1, 0, 0)$, $u_2 = (3, 7, -2)$, $u_3 = (0, 4, 1)$.																
iii)	ESS DE EXECUTE AND A CONTROL OF THE										8	6	Ар				
	Find the curve $y = f(x)$ for which $\int_{x_1}^{x_2} y \sqrt{1 + {y'}^2} dx$ is extremum											18130					
	subject to the constraint $\int_{x_1}^{x_2} \sqrt{1 + {y'}^2} \ dx = l$.									MA HER THE							
	subj	ect to t	ne co	nstrai	If J_{x_1}	VI	+ 'y'	ax	- l.						1		

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai) April – May 2023

Program: B.Tech Scheme: II

Examination: SY Semester: IV Course Code: EXC401

Course Name: Applications of Mathematics in Engineering-II

Max. Marks: 60 **Duration: 2.5 Hours** Date of Exam: 13/05/2023

		Max. Marks	СО	BT level
Q2		12		
v)	Find the extremal of $\int_{x_1}^{x_2} (y^2 + y'^2 + 6y \sin x) dx$	4	6	Ap
vi)	Reduce the following quadratic form into canonical form. $x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_3 + 2x_2x_3 + 2x_2x_1$	4	5	Ap

Page 3 of 3.