K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

April – May 2023

Program: B.Tech Scheme: II

Examination: SY Semester: IV Course Code: CEC401, AIC401, ITC401

Course Name: Applications of Mathematics in Engineering-II

Date of Exam: 13/05/2023

Duration: 2.5 Hours

Max. Marks: 60

Instructions:

(1)All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

(3)Assume suitable data, if necessary.

(4) Use of Statistical Tables permitted.

		Max. Marks	СО	BT
Q1	Solve any six questions out of eight:	12		
i)	Find the eigenvalues of adj. A if $A = \begin{bmatrix} -1 & 1 & -2 \\ 0 & -3 & 4 \\ 0 & 0 & -2 \end{bmatrix}$	Alc 2	1	Ap
ii)	Evaluate $\int f(z)dz$ along the parabola $y = 2x^2$ from $z = 0$ to $z = 3 + 18i$ where $f(z) = x^2 - 2iy$	2	2	Ap
iii)	Find the angle between the vectors (2,-1,1) and (1,1,2)	2	3	Ap
iv)	A variable X follows a Poisson distribution with variance 3. Calculate (i) $P(X=2)$ (ii) $P(X \ge 4)$	2	4	Ap
v)	The incomes of a group of 10,000 persons were found to be normally distributed with mean ₹ 520 and standard deviation ₹ 60 . Find the number of persons having incomes between ₹400 and ₹550	2	4	Ap
vi)	Write the dual of following LPP Maximise $z = 2x_1 - x_2 + 4x_3$ Subject to $x_1 + 2x_2 - x_3 \le 5$, $2x_1 - x_2 + x_3 \le 6$, $x_1 + x_2 + 3x_3 \le 10$ $4x_1 + x_3 \le 12$, $x_1, x_2, x_3 \ge 0$	2	5	Ap
vii)	Find the stationary point of the function $z = x_1^2 + x_2^2 + x_3^2 - 4x_1 - 8x_2 - 12x_3 + 100$	2	6	Ap
viii)	If $A = \begin{bmatrix} 123 & 231 & 312 \\ 231 & 312 & 123 \\ 312 & 123 & 231 \end{bmatrix}$, prove that one of the eigenvalues of A is 666.	2	1	Ap
Q.2	Solve any four questions out of six.	16	4)	
i)	Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ and obtain A^{-1}	4	1	Ap

i	Using Cauchy's residue theorem evaluate $\int_C \frac{\sin^6 z}{\left(z - \frac{\pi}{6}\right)^n} dz$ where C is the circle $ z = 1$ for n=1 and n=3	4	2	2 A
ii	Let R ³ have the Euclidean inner product. Use Gram-Schmidt process to transform the basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ into orthonormal basis, where $\mathbf{u}_1 = (0,0,1), \mathbf{u}_2 = (0,1,1), \mathbf{u}_3 = (1,1,1).$	4	3	A
iv	Maximise $z = x_1 + 3x_2 + 3x_3$ Subject to $x_1 + 2x_2 + 3x_3 = 4$	4 e,	5	Aj
v)	Using Lagrange's multipliers, solve the following NAPP	4	6	Ap
vi)	Samples of electric tubes of two companies were tested for lengths of their life and the following information was obtained, Company A No. of sample Mean life in hrs Standard deviations in hrs Tind the t statistic to test whether the difference in the sample means is significant	4	4	Ap
Q.3	Solve any two questions out of three.	16	7 9 3	-
i)	Show that the following matrix is diagonalisable. Also find the diagonal form and a diagonalising matrix $ \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix} $	8	1	Ap
ii)	If $f(\xi) = \int_C \frac{3z^2 + 7z + 1}{z - \xi} dz$ where C is the circle $ z = 2$, find the values of $f(-3), f(i), f'(1-i), f''(1-i)$	8	2	Ap
ii)	Using Big M method solve the following LPP Maximize $z = 5 x_1 - 2 x_2 + 7x_3$ Subject to $2x_1 + 2 x_2 - x_3 \ge 2$, $3x_1 - 4 x_2 \le 3$; $x_2 + 3 x_3 \le 5$; $x_1, x_2, x_3 \ge 0$.	8	5	Ap
2.4	Solve any two questions out of three.	16		
)	If $V = R^3$ is the vector space of ordered triplets of real results.	8	3	Ap

	(b) W	= {(x	(x,y,z)): y =	x +	z, x,	y, z ∈	<i>R</i> }								
ii)	300 digits were chosen at random from a table of random numbers. The frequencies of digits were as follows.													8	4	Ap
		-	1	-	7	4	5	6	7	8	9	Tota 1				-'
	Frequen cy:	28	29	33	3	26	35	32	30	3	2 5	300				
	Use χ^2 -test examine the hypothesis that the digits were distributed in equal numbers in the table.															
iii)	Using the Kuhn –Tucker conditions to solve the N.L.P.P Maximise $z = 8 x_1 + 10 x_2 - x_1^2 - x_2^2$ Subject to $3 x_1 + 2 x_2 \le 6$; $x_1, x_2 \ge 0$.												8	6	Ap	
