K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Code: 1UEXDLC7041

Subject Name: Neural Networks and Deep Learning

Date:

01-06-2023

May Tune 2023

(B.Tech / M.Tech.) Electronics and Telecommunication Engineering Examination: FY/SY/TY/LY Semester: WHWHWIV/VI/VII/VIII

Course Code: 1UEXDLC7041 Course Name: Neural Networks and Deep Learning

Duration: 2.5 Hours

Max. Marks: 60

Instructions:

(1) All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

(3) Assume suitable data, if necessary.

		Max. Marks	СО	BT level
Q1	Solve any six questions out of eight:	12		
i)	What is the difference between biological neurons and artificial neurons?	2	1	U
ii)	What are hyperparametrs? Why they named as hyperparametrs?	2	4	U
iii)	What is fully connected layer?	2	5	U
iv)	Explain the problem of vanishing gradient.	2	3	U
v)	Write application of Neural Network in image processing	2	6	R
vi)	What will be the dimensions of the output activation if a convolution filter of dimension 5 x 5 is applied over an input image of dimension	2	5	A
	32×32 with stride = 2 and no padding.			
vii)	What is classification decision boundary?	2	6	U
viii)	State and explain different types of activation functions.	2	2	U
Q.2	Solve any four questions out of six.	16		
i)	State and prove perceptron Converge Theorem	4	1	U, AP

Subject Code: 1UEXDLC7041

Subject Name: Neural Networks and Deep Learning

Date:

ii)	What is Regularization? Explain Dropout.	4	3	U, AP
iii)	What is the exploding gradient problem while using back propagation technique?	4	4	U
iv)	Describe greedy layer-wise training?	4	5	Ū
v)	Find the output of the neuron Y for the network shown in figure below using binary sigmoid activation function	4	2, 4, 5	AP, AN
	22			

vi) How LSTM is different than RNN?

4 4,5 U

Q.3 Solve any two questions out of three.

allishes see 141

16

- i) Model accuracy or Model performance, which one will you prefer and interpret why?
 - 8 4 U
- ii) Distinguish the contrast between Data Augmentation, L1 and L2 Regulation Strategy.
 - 8 2 U, AN
- Find New Weights of the network shown in figure below using the Gradient Descent Method for Error calculation. (Solve only one Iteration).

Page 2 of 3

