K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

April-May 2023 (B.Tech)

Examination: SY Semester: III

Course Code: EXC303

Course Name: Electronic Devices and Circuits

Duration: 2.5 Hours

Max. Marks: 60

Date of Exam: 30/05/2023

Instructions:

(1)All questions are compulsory.

(2)Draw neat diagrams wherever applicable. (3)Assume suitable data, if necessary.

		Max. Marks	СО	BT level
Q 1	Solve any six questions out of eight:	12		
i)	Describe the channel length modulation effect and define the parameter.	2	1	U
ii)	Which factor decreases gain of amplifier at lower frequency? Explain.	2	2	U
iii)	Write transfer function of RC high pass filter.	2	1	U
iv)	Write down the expression of V_{GS} in terms of I_{Dsat} if nmos transistor is in saturation region.	2	3	U
v)	State expression of diode voltage in terms of diode current.	2	4	R
vi)	Define CMRR.	2	5	R
vii)	State expression for Vo for differentia amplifier.	2	6	U
viii)	Draw n channel EMOSFET cross section diagram for $V_{GS} < V_{TN}$ showing channel area clearly.	2	2	
Q.2	Solve any four questions out of six.	16		
i)	Calculate the drain current in an NMOS transistor with parameters V_{TN} = 0.8 V, k'n =80 μ A/V², W = 10 μ m, L = 1.2 μ m, and with applied voltages of V_{DS} = 0.1 V and (a) V_{GS} = 0, (b) V_{GS} = 1 V, (c) V_{GS} = 2.5 V	4	1	AP
ii)	How does a transistor width-to-length ratio affect the small-signal voltage gain of a common-source amplifier?	4	3	U
iii)	Describe the channel length modulation effect and define the parameter λ .	4	4	U
iv)	Explain effect of Miller capacitance.	4	2	U
v)	Explain the effect of R_{sig} and R_{L} on the amplifier gain.	4	5	U
vi)	Describe an amplifier system with one application as Example.	4	6	U
Q.3	Solve any two questions out of three.	16		

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

i)	Discuss, using the concept of a load line superimposed on the transistor characteristics, how a simple common-source circuit can amplify a time-varying signal.	8	1	U	
ii)	Draw high frequency equivalent circuit model for nmos.	8	2	U	\dashv
iii)	Explain MOSFET I-V characteristic in details and state expression for small signal parameter.	8	3	U	
Q.4	Solve any two questions out of three.	16			+
i)	How does a transistor width-to-length ratio affect the small-signal voltage gain of a common-source amplifier? Explain by deriving gain of amplifier.	8	5	U	
ii)	The circuit in Figure is to be used as a simple audio amplifier. Find lower corner frequency if Cc=0.477uF and Cc1=1uF. $R_D = 6.7 \text{ k}\Omega$ $R_C = \frac{1}{5} \text{ k}\Omega$ $R_C = \frac{1}{5} \text{ k}\Omega$ $R_C = \frac{1}{5} \text{ k}\Omega$	8	4	AP	
ii)	In the circuit in Figure below the transistor parameters are V_{TN} = 0.8 V and K_n = 0.5 mA/V². Calculate V_{GS} , I_{D} , and V_{DS} . $ V_{DD} = 10 \text{ V} $ $ R_1 = 32 \text{ k}\Omega $ $ R_2 = 18 \text{ k}\Omega $ $ R_S = 2 \text{ k}\Omega $	8	6	AP	