K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Code: EXC 502

Subject Name: Digital VLSI Design

Date:

B.Tech Program: Electronics and Telecommunication

Examination: TY Semester: V

Course Code: EXC502 Duration: 2.5 Hours

Course Name: Digital VLSI Design

Max. Marks: 60

Instructions:

(1) All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

(3)Assi	ume suitable data, if necessary.			
,			Max. Marks	CO	BT level
(Q 1	Solve any six questions out of eight:	12		
	i)	Write expression for the drain current of nMOS in saturation and linear region of operation.	2	1	R
	ii)	Define propagation delay high to low (T _{PHL}) for COMS inverter.	2	2	R
	iii)	Realize OR gate using Domino design style.	2	3	A
	iv)	List different types of semiconductor memories.	2	4	R
	v)	Draw Human Body Model (HBM) for Electrostatic Discharge (ESD).	2	5	R
	vi)	List the steps involved in RTL design.	2	6	R
	vii)	Draw 2:1 MUX using transmission gate.	2	3	Α
	viii)	List different colour codes used in stick diagram to represent different layers.	2	1	R
	Q.2	Solve any four questions out of six.	16		
	i)	Write a short note on scaling. Explain types of scaling.	4	1	U
	ii)	Derive an expression for input low voltage (V_{IL}) of CMOS inverter.	4	2	U
	iii)	Explain CMOS latch-up problem in static CMOS design style.	4	3	U .
	iv)	Design a NAND ROM to save the given binary data: 0100, 1001, 1000, 1010	4	4	А
	v)	Demonstrate addition of $(1101\ 1000\ 0101\ 1110)_2$ and $(0011\ 1001\ 0010\ 0001)_2$ using Carry Select Adder.	4	5	А
	vi)	Draw a datapath for 3 tap FIR filter using RTL design.	4	6	A

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

S	ubject Code: EXC 502 Subject Name: Digital VLSI Design Date	29/	15/20	ns
Q.3	Solve any two questions out of three.	16		
i)	Draw stick diagram and mask layout for CMOS NOR gate.	8	1	A
ii)	Draw 3T-DRAM cell. Explain read '0', write '0', read '1' and write '1' operation.	8	4	U
iii)	Design Soda Dispenser machine using RTL design.	8	6	С
Q.4	Solve any two questions out of three.	16		
i)	Consider a CMOS inverter with the following parameters: nMOS: $Vt,n = 0.48 \text{ V}$ $\mu n\text{Cox} = 102 \mu\text{A/V2}$ $(W/L)n = 10 \mu\text{MOS}$: $Vt,p = -0.46 \text{V}$ $\mu p\text{Cox} = 51.6 \mu\text{A/V2}$ $(W/L)p = 19 \muCalculate the noise margin birt. FILE$	8	2	Α
ii)	Calculate the noise margin high. The power supply voltage is VDD = 1.2 V. Design static CMOS circuit for full adder using mirror circuit.		schall.	
iii)	Draw 4 bit array multiplier. Highlight the worst case delay path. Find out the worst case delay if propagation delay of the components is as follows: AND gate: 1ns Half Adder: 2ns Full Adder: 2ns	8	3 5	A A
	run Auder: Zns			