K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Name: Discrete Time Signal Processing
May/June 2023 Subject Code: EXC503

Date: 31/05/2023

Program: B.Tech. (Electronics and Telecommunication)

Examination: TY Semester: V

Course Code: EXC503 and Course Name: Discrete Time Signal Processing Duration: 2.5 Hours Max. Marks: 60

Instructions:

(1) All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

(3) Assume suitable data, if necessary.

Q. No	Question	Max. Marks	СО	BT level
Q.1	Solve any six questions out of eight:	12		
i)	Explain ECG signal analysis	02	6	U
ii)	Find DFT of $\delta(n)$	02	2	U
iii)	Why a band-reject filter is called a notch filter?	02	1	U
iv)	Compare Symmetric and Anti-symmetric FIR filter	02	3	U
v)	What is frequency wrapping? How its effect can be eliminated?	02	3	U
vi)	State and explain quantization noise	02	5	U
vii)	Explain Frequency sampling structure of FIR system	02	4	U
viii)	Compare DIT and DIF algorithm	02	2	U
Q.2	Solve any four questions out of six.	16		
i)	Obtain H(z) from H(s) when T= 1 sec and $H(s) = \frac{1}{s^2 + 2s + 1}$, using Bilinear transformation	04	3	A
ii)	State and prove linearity property of DFT	04	2	U
iii)	Explain Gibb's phenomenon	04	3	U
iv)	Realize the filter transfer function, $(z) = \frac{1}{(1+2z^{-1})(1-z^{-2})}$.	04	5	A
v)	Perform circular convolution of the sequences, $x_1(n) = \{2,1,2,1\}$ and $x_2(n) = \{1,2,3,4\}$	04	2	A
vi)	State how DSP can be used for Dual Tone Multi-Frequency Signal Detection.	04	6	U

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Code: EXC503 Subject Name: Discrete Time Signal Processing		Date: 31/057 2023			
Q.3	Solve any two questions out of three.	16			
i)	Design a Butterworth digital IIR low pass filter using Bilinear transformation by taking sampling frequency 8 KHz, to satisfy the following specifications. $0.75 \leq \left H(e^{j\omega})\right \leq 1 : 0 \leq \omega \leq 0.25\pi$ $\left H(e^{j\omega})\right \leq 0.23 : 0.63\pi \leq \omega \leq \pi$	08	3	A	
ii)	Explain Truncation and Rounding method with graph.	08	5	U	
iii)	Explain Short Time Spectral Analysis of Speech signal using DSP	08	6	U	
Q.4	Solve any two questions out of three.	16			
i)	Obtain the cascade structure of the FIR filter, defined by the transfer function, $H(z) = (a_0 + a_1 z^{-1} + a_2 z^{-2})(b_0 + b_1 z^{-1})$	08	4	A	
ii)	Draw ideal and actual frequency response characteristics of various types of filters and explain each in brief.	08	1	U	
iii)	Compute 8-point DFT of $x(n) = (1, 1, 3, 3, 1, 1, 2, 2)$ by redix-2 DIT-FFT.	08	2	A	
