K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Code: BSC104

Subject Name: Engineering Mechanics

Date: -14/08/2023

Supplementary Examination August 2022 - 23 Program: FY B.Tech. All Branches

Supplementary Examination: FY

Semester: I

Course Code: BSC104 and Course Name: Engineering Mechanics Duration: 2.5 Hours

Max. Marks: 60

Instructions:

(1) All questions are compulsory.

(2) Draw neat diagrams wherever applicable.

(3) A	Assume suitable data, if necessary.			
		Max. Marks	СО	BT level
Q.1	Attempt any six out of eight:-	12		
i)	A block of weight 200N rests on a horizontal surface. The co-efficient of friction between the block & the horizontal surface is 0.4. Find the frictional force acting on the block if a horizontal force of 40N is applied to the block.	2	1	A
ii)	Find Centroid for the given plane lamina with respect to X & Y axes.	2	2.	Ŭ
iii)	Determine the velocity of point B on the roller rolling at 4 rad/s clockwise. Diameter of roller is 1.5m.	2	4	R
	A point P moves along a straight line according to the equation $X = 4t^3 + 2t + 5$, where X is in meters, t is in seconds. Determine the velocity & acceleration when t=3 sec.	2	3	A
v) (Convert the uniformly varying load into its equivalent point load and show its point of application. 10N/m 6 m B	2	1	U

K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

	4/08/202	23	_
Prind the moment of the SUN force about point O. 2 in 0.5 m 50 N	2	1	
ii) State Lami's Theorem.	2	1	_
Determine the shown force components along X and Y axis. Y X 70N	2	1	
.2 Attempt any four out of six:-	16		-
Four forces acts on a bolt A as shown. Determine their resultant. 80N 20° 150N 110N	4	1	
Find the centroid of the shaded portion. Y 20cm	4	2	
A roller B of weight W = 5 kN and 400 mm diameter rests on a smooth inclined plane. It is prevented from rolling down the plane by a string AB. Find the tension in the string.	4	1	
The motion of a particle is defined by a relation $v = 4t^2 - 3t - 1$ where v is in m/s and t is in sec. If the displacement $x = -4$ m at $t = 0$, determine At $t = 3$ secs i) Acceleration ii) Velocity iii) Displacement iv) Distance traveled. A support block is acted upon by two forces as shown. If $\mu = 0.35$, determine the force P	4	4	
IA SUPPORT BLOOK to goted times but to C			_

K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Code: BSC104 Subject Name: Engineering Mechanics Date: -14/08/2023 A bar, 3m long slides down the plane shown in figure. The velocity of end A is 3.6 m/s vi) to the right. Determine the angular velocity of AB and velocity of end B at the instant 5 4 An Q.3 Attempt any two out of three:-16 Find the resultant of the force system acting on a body OABC. Locate the resultant i) with respect to O. Also find the points where the resultant will cutthe X and Y axis. 8 1 A 3 m 20 kN Determine the reactions at hinged support at B and roller support at A as shown in ii) figure. 40 kN 100 kNm 80 kN 20 kN/m A 3 m 2 m 2 m 2 m At the position shown in the figure, the crank AB has an angular velocity of 3 rad/s iii) clockwise. Find the velocity of the slider C and the point D at the instant shown. 8 5 An

K. J. Somaiya Institute of Engineering and Information Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Code: BSC104 Subject Name: Engineering Mechanics Date: -14/08/2023 125 mm 125 mm 100 mm Q.4 Attempt any two out of three:-16 A boy throws a ball so that it may just clear a wall 3.6 m high. The boy is at distance of i) 4.8 m from the wall. The ball was found to hit the ground at a distance of 3.6 m on the other side of the wall. Find the least velocity with which the ball can be thrown. 4 8 3.6m 4.8m 3.6m Two smooth spheres of weight 100N & of radius 250mm each are in equilibrium in a ii) horizontal channel of width 900mm as shown in fig. Find the reactions at the surfaces of contact A, B, C & D assuming all smooth surfaces. 8 900mm Fig. shows a plot of accelaration versus time for a particle moving along the X-axis. iii) Draw v-t and s-t graphs. $a(m/s^2)$ 6 8 4 An t (sec) 0 60 180 210