K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov – Dec 2023 (B.Tech) Program: EX

Examination: LY Semester: VII

Course Code: EXDLC7043 and Course Name: ROBOTICS

Duration: 2.5 Hours

Max. Marks: 60

Instructions:

(1) All questions are compulsory.

(2)Draw neat diagrams wherever applicable.

(3) Assume suitable data, if necessary.

		Max. Marks	СО	BT
Q 1	Solve any six questions out of eight:	12		
i)	List down methods of Graph deterministic search.	2	1	U
ii)	Explain working of mechanical gyroscope.	2	1	U
iii)	State theorem of total Probability	2	3	AP
iv)	State laws of Robotics.	2	3	U
v)	Explain problem of Localization in Robotics.	2	5	U
vi)	Which of the Kinematic parameter are variable for revolute joint? Which are variable for a prismatic joint?	2 .	2	U
vii)	Define Following 1) Accuracy 2) Precision.	2	6	U
viii)	State baye's rules	2	5	U
Q.2	Solve any four questions out of six.	16		
i)	Define Prediction (action) update and Perception (measurement) update.	4	1	AP
	Lating and a promise make a Cliff Act about the Vince and a constant of		*	
ii)	Find a Composite Rotation Matrix for robots if its Mobile coordinate frame is rotated by angle 60 degree about f1, 30 degree about f2.	4	2	AP
iii)	Classify robots based on Drive technologies, Motion control method and work envelope Geometry.	4	1	AP

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

iv)	Explain Cost effectiveness of soft automation in comparison with Hard Automation and Manual Labour.	4	3	AP
v)	Consider following coordinate transformation matrix R, representing fundamental rotation. What is the axis of rotation (1,2 or 3), and what is the angle of rotation? $R = \begin{bmatrix} 0.866 & 0 & -0.5 \\ 0 & 1 & 0 \\ 0.5 & 0 & 0.866 \end{bmatrix}$	4	2	AP
vi)	Formulate mathematical Definition of SLAM	4	5	U
Q.3	Solve any two questions out of three.	16	me va	
i)	Explain A* algorithm with example for path planning.	8	1	U
ii)	Explain the file system level of ROS files organized on the hard disk.	8	4	U
iii)	Explain Fundamental Rotation matrix and rules to obtain composite rotation matrix.	8	5	U
Q.4	Solve any two questions out of three.	16		
i)	Illustrate working principal of markov localization	8	3	U
ii)	For a given Link transformation matrix; For Microbot alpha	8	2	AP
	$T_{k-1}^k = \begin{cases} C\dot{\theta}_k & -C\alpha_k S\theta_k & S\alpha_k S\theta_k & a_k C\theta_k \\ S\theta_k & C\alpha_k C\theta_k & -S\alpha_k C\theta_k & a_k S\theta_k \\ S\alpha_k & C\alpha_k & d_k \\ 0 & 0 & 0 & 1 \end{cases}$ Derive for T_{base}^{Wrist}			5
iii)	Explain PID controller and write a Pseudo code for PID controller	8	6.	U
