K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2023

(B.Tech.) Program: Computer Engineering Scheme I/II/IIB/III: II
Examination: TY Semester: V

Course Code: CEC501 and Course Name: Theory of Computer Science

Date of Exam: 28/11/2023

Duration: 2.5 Hours

Max. Marks: 60

1)All 2)Dra	ctions: questions are compulsory. w neat diagrams wherever applicable.		ori rijen SAA	
3)Ass	sume suitable data, if necessary.	Max. Marks	СО	BT level
21	Solve any six questions out of eight	12		1
)	Explain decision properties of regular languages.	2	CO2	U
i)	What is the language generated by the grammar $G = (V_*T, P, S)$ where $P = \{S - >aSb, S - >ab\}$	2	CO3	Ap
	Differentiate between recursive and recursively enumerable languages	2	CO6	U
iii) iv)	Difference between DPDA and NPDA.	2	CO4	U
v)	Convert the following FA to regular expression using state elimination method Q D Q D Q D Q D Q D Q D D	2	CO1	Ap
vi)	Write in short which language is accepted by Turing machine	2	CO5	U
vii)	Design Moore machine to count each occurrence of 'aab' over $\Sigma = \{a,b\}$	2	CO1	Ap
viii)	Give a Left Linear Grammar (LLG) for the following DFA. Start B A B C B C C C C C C C C C C	2	CO5	Ap
Q 2	Solve any four questions out of six.	16		
i)	Design Mealy machine to output even and odd depending on the number of 1's are even and odd over $\Sigma = \{a,b\}$	4	COI	A
ii)	Explain Post Correspondence Problem with an example.	4	CO6	U

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Nov - Dec 2023

(B.Tech .) Program: Computer Engineering Scheme I/II/IIB/III: II

Examination: TY Semester: V

Course Code: CEC501 and Course Name: Theory of Computer Science

Date of Exam: 28/11/2023 Duration: 2.5 Hours Max. Marks: 60

iii)	Design PDA to check well-formed parentheses.	4	CO4	Ap
iv)	Convert the following CFG to GNF S->AA a A->SS b	4	CO3	Ap
v)	Find regular expression for following DFA using Arden's theorem.	4	CO2	Ap
vi)	Design Turing machine that accepts the strings over $\Sigma = \{0,1\}$ and converts every occurrence of 111 to 101	4	CO5	Ap
Q.3	Solve any two questions out of three.	16		
i)	Convert the following into minimized DFA	8	CO1	Ap
ii)	Reduce the following S-> aS A C A-> aB d ε B-> cB ad ε C-> aB db	8	CO3	Ap
iii)	Design TM to perform 2's complement of a binary number.	8	CO5	Ap
Q.4	Solve any two questions out of three	16		277
i)	Design PDA for the following language of LCM={WCW ^R W{a,b}*}, where W ^R is the reverse of W and C is a constant.	8	CO4	An
ii)	Design Turing machine for recognizing L={a ²ⁿ b ²ⁿ n>=1}.	8	CO5	An
iii)	Explain in detail the closure properties of Regular languages.	8	CO2	U
