K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Backlog Exam. 2023 Program: B.Tech. (2002) Examination: FY Semester: I Scheme: II

Course Code: BSC102 and Course Name: Engineering Physics

Date of Exam: 2 2/12/2023

Duration: 02 Hours

Max. Marks: 45

Instructions: 1) All questions are compulsory. 2) Draw neat diagrams wherever applicable. 3) Assume suitable data, if necessary.					
3	A SO') P Gyneleysa To te it may far it is all the far and the source of	Max. Marks	СО	BT level	
Q 1	Solve any 5 questions out of six	15			
i)	The speed of an electron is measured to within an uncertainty of 2×10^4 m/s. What is the minimum space required by the electron to be confined to an atom?	3	CO1	APP	
ii)	Draw the following planes in a cubic unit cell –(100), (212), (111)	3	CO2	U	
iii)	What are properties of matter waves?	3	CO3	U	
iv)	With a neat diagram show, how does Fermi level change with increasing doping concentration in n-type and p-Type semiconductor?	3	CO3	U	

	increasing doping concentration in n-type and p-Type semiconductor?			
v)	Why excessively thin films appear black?	3	CO4	U
vi)	State and explain Meissner effect exhibited by superconductors.	3	CO5	U
Q.2	Solve any three questions out of four.	15		
i)	Derive one dimensional Schrodinger's Time Independent wave equation.	5	CO1	U
ii)	An electron has a speed of 900 m/s with an accuracy of 0.001%. Calculate the uncertainty in the position of the electron.	5	CO1	APP
iii)	Show that for an intrinsic semiconductor, $E_F = \frac{E_C + E_V}{2}$ where symbols have their usual meaning.	5	CO3	U
iv)	What is the probability of an electron being thermally promoted to conduction band in silicon at 27°C? Given: band gap is 1.12 eV.	5	CO3	APP

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Backlog Exam. DEC 2023 Program: B. Tech.

Examination: FY Semester: I Scheme: II

Course Code: BSC102 and Course Name: Engineering Physics

Date of Exam: 2 8/12/2023 D

Duration: 02 Hours

Max. Marks: 45

Q.3	Solve any three questions out of four.	15		
i)	Explain construction and working of Bragg's X-ray spectrometer.	5	CO2	APP
ii)	Write a short note on nonreflecting films.	5	CO4	U
iii)	The diameter of 10 th dark ring is 5 mm, when light of wavelength 5500 A ⁰ is used in Newton's rings experiment. If the space between lens and glass plate is filled with a liquid of refractive index 1.25, what will be the diameter of 10 th dark ring?	5	CO4	APP
iv)	What do you mean by superconductor? Define critical field. Differentiate between Type 1 and Type 2 superconductors.	5	CO5	U
