K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Code: AIC302

Subject Name: Discrete Structure & Graph Theory

Date: 6/12/2023

Nov - Dec 2023

(B.Tech) P rogram: Artificial Intelligence & Data Science Examination: SY Semester: III

Course Code: AIC 302

Course Name: Discrete Structure & Graph Theory

Duration: 02 Hours

Max. Marks: 45

(1)All (2)Dra	questions: questions are compulsory. aw neat diagrams wherever applicable. sume suitable data, if necessary.		onicre original original	
		Max. Marks	СО	BT level
Q 1	Solve any 5 questions out of six.	15)	
i)	Using laws of logic, show that : $\neg(p\lor(\neg p\land q))$ and $\neg p\land \neg q$ are logically Equivalent by developing a series of logic equivalences	3	CO1	Apply
ii)	Test whether the following function is on-to-one, onto or both. $f: Z \to Z$, $f(x) = x^2 + x + 1$	3	CO2	Understand
iii)	Draw the Hasse diagram of the set $\{1, 2, 3, 4, 12\}$ under partial order relation divides.	3	CO3	Apply
iv)	Explain Extended Pigeonhole principle. How many friends you must have to guarantee that at least five of them will have birthdays in the same month.	3 (8,8) (8,8) (8,8)	CO4	Apply
v)	Prove that he set Q of rational numbers with binary operation * defined by $a * b = a + b - ab$; is a semi-group, where $a, b \square Q$.	3	CO5	Evaluate
vi)	Explain the terms following terms giving examples: (a) Group (b) Poset	3	CO6	Understand
Q.2	Solve any three questions out of four.	15	ed by	nieh
i)	Prove by Mathematical Induction that $1 + 2 + 2^2 + + 2^n = 2^{n+1} - 1$.	5	CO1	Apply

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Subject Code: AIC302

Subject Name: Discrete Structure & Graph Theory

Date: 8/ 12/2023

Nov - Dec 2023

(B.Tech) Program: Artificial Intelligence & Data Science

Examination: SY Semester: III

Course Code: AIC 302

Course Name: Discrete Structure & Graph Theory

Duration: 02 Hours

Max. Marks: 45

ii)	Show that the set of all divisors of 70 form a lattice.	5	CO3	Apply
iii)	Determine if the following graphs (G1 & G2 respectively) are isomorphic or not.	5	CO6	Evaluate
	A 8 1 2 3			
	€ C C C C C C C C C C C C C C C C C C C	rroireoup	e any S	01 80
	5 6 7 Allisaigol aus prog	bigot ito - bas (()	ig laws (√g−)	
	A Little of the following the control of the contro	esine a	griqois	/9b
iv)	Is every Eulerian graph a Hamiltonian? Is every Hamiltonian graph a Eulerian? Explain with necessary graphs.	5	CO6	Understand
Q.3	Solve any three questions out of four.	15	a sur A Sulata	bio C
i)	Let $A = \{1, 2, 3, 4, 5\}$, and let $R = \{(1,1), (1,3), (1,4), (2,2), (2,5), (3,1), (3,3), (3,4), (4,1), (4,3), (4,4), (5,2), (5,5)\}$. Is R an equivalence relation?	1 5 ma	CO2	Evaluate
ii)	solve $a_n - 7a_{n-2} + 6a_{n-3} = 0$ where $a_0 = 8$, $a_1 = 6$ and $a_2 = 22$.	5	CO4	Evaluate
iii)	Let $A = \{1, 2, 3, 4\}$ and let $R = \{(1, 1), (1, 2), (1, 4), (2, 4), (3, 1), (3, 2), (4, 2), (4, 3), (4, 4)\}$. Find transitive closure of R	5	CO2	Evaluate
	using Warshall's algorithm.		1980	*
iv)	Consider the (2, 5) group encoding function $e: B^2 \rightarrow B^5$ defined by $e(00) = 00000$, $e(01) = 01110$, $e(10) = 10101$, e(11) = 11011 Decode the following words relative to	5	CO5	Evaluate
	maximum likelihood decoding function.	thoman	M ves	Vort (
	maximum likelihood decoding function. a) 11110 b)10011		1-54	
