

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Supplementary Examination - August 2023

(B.Tech) Program: Electronics and Telecommunication Engineering Scheme: I/II

Examination: SY Semester: TV Course Code: 1UEXC401 / EXC401

Course Name: Applications of Mathematics in Engineering - II

Date of Exam: 23-Aug-2023 Duration: 2.5 Hours Max. Marks: 60

Instructions: (1) All questions are compulsory. (2)Draw neat diagrams wherever applicable. (3) Assume suitable data, if necessary. BT Max. CO level Marks Solve any six questions out of eight: Q1 12 Evaluate $\int_C \frac{e^{2z}}{(z-1)^4} dz$ where C is |z| = 0.5. i) 2 1 Ap A discrete random variable has probability density function given below. Find k and expectation of... $X = x_i \mid -2$ 0 -1 2 3 $P(x_i)$ 0.1 2k 0.1 2k ii) 2 3 Ap Determine the pole of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and find the residue at pole iii) one of the poles. 2 1 Ap Write down the matrix in quadratic forms. $x_1^2 + x_2^2 - 3x_3^2 + 2x_1x_2 + 6x_2x_3 - 4x_1x_3$ iv) 5 2 Ap State any two formulas of Euler Lagrange's differential equation. V) 2 6 Ap Given $b_{yx} = \frac{5}{6}$ and $b_{xy} = \frac{8}{15}$. Find the value of r. vi) 2 2 Ap Verify Cauchy-Schwartz inequality for the vectors u = (-4, 2, 1) and v =vii) (8, -4, -2).2 4 Ap The probability density function of a random variable X is 2 3 4 6 P(X=x)k 3k 5k 7k 9k 11k 13k Find the value of k. viii) 2 3 Ap Solve any four questions out of six. 0.2 16 Evaluate $\int z^2 dz$ from P(1,1) to Q(2,4) where C is the curve x=t and $y=t^2$. i) 4 1 Ap A discrete random variable A has the following probability distribution function $X = x_i$ -2 -1 0 1 2 3 ii) $P(x_i)$ 0.1 k 0.2 2k 0.3 3k 3 4 Ap

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Supplementary Examination - August 2023

(B.Tech) Program: Electronics and Telecommunication Engineering Scheme: I/II

Examination: SY Semester: V

Course Code: 1UEXC401 / EXC401

Course Name: Applications of Mathematics in Engineering - II

Date of Exam: 23-Aug-2023 Duration: 2.5 Hours

	Duration: 2.5 Hours	Max.	Marks:	60
	Find (i) k (ii) $P(X \ge 2)$ (iii) $P(-2 < x < 2)$.	926 80	questio	I A(P)
iii)	Find a vector orthogonal to both $u = (-6,4,2)$, $v = (3, 1, 5)$.	4	4	A
iv)	Calculate Spearman's rank correlation coefficient R X: 18 20 34 52 12 Y: 39 23 35 18 46	4	2	Ap
v)	Show that the quadratic form $3x^2 + 5y^2 + 3z^2 - 2 \times y + 2 \times z - 2y \times z$ is positive definite.	4	15 15100	Ap
vi)	Find the curve on which functional $\int_0^1 (y'^2 + 12xy') dx$ with $y(0) = 0$ and $y(1) = 1$ is extremal.	1 0101	oslb 7	
Q.3	Solve any two questions out of three.	4	6	Ap
	Calculate the coefficients of regression and hence the equations of the lines of	16	POG	
	X 5 6 5			
)	X 5 6 7 8 9 10 11 Y 11 14 14 15 12 17 16	8	Deferm	
)	Find all possible Laurent's expansions of the function $f(z) = \frac{1}{z^2(z-1)(z+2)} \text{ about } z = 0.$	8	2	Ap
A i)	Reduce the following quadratic form to the diagonal form through congruent transformations. $x^2 + 2y^2 - 3z^2 + 5w^2 - 4xy + 8yz + 2yw - 2zx$	8	5	Ар
.4	Solve any two questions out of three.	16	Vertiy	Р
A	If X is a normal variate with mean 10 and standard deviation 4, find (i) $P(X-14 < 1)$ (ii) $P(5 \le X \le 18)$ (iii) $P(X \le 12)$	8	3	Ap
A	Let R^3 have the Euclidean inner product. Use Gram Schmidt process to transform the basis $\{u_1, u_2, u_3\}$ into orthonormal basis where $u_1 = (1, 1, 1), u_2 = (-1, 1, 0), u_3 = (1, 2, 1).$	8	4	Ap
	Using Rayleigh-Ritz method, solve the boundary value problem	Joi gri	\$ 57105	, th
	$I = \int_0^1 (2xy + y^2 - y'^2) dx ; \ 0 \le x \le 1 , \text{ given } y(0) = y(1) = 0.$	8	6	Ap