K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Feb/Mas 2024 Supplementary Exam Scheme: II

B. Tech Program: Electronics and Telecommunication

Examination: TY

Course Code: EXC502

Date of Exam: 29-02-2024

Semester: V Course Name: Digital VLSI Design

Duration: 2.5 Hours Max. Marks: 60

Instructions:

(1) All questions are compulsory.

(2) Draw neat diagrams wherever applicable.

(3) Assume suitable data, if necessary.						
			Max. Marks	СО	BT level	
	Q 1	Solve any six questions out of eight:	12			
	i)	Draw a capacitance model for an nMOS.		1	R	
	ii)	Define rise time for CMOS inverter.		2	R	
	1	Realize OR gate using Transmission gate.		3	A	
	iv)	What are different types of semiconductor memory?		4	R	
	v)	Write expression for propagate and generate signal in Carry Look Ahead Adder.		5	R	
	vi)	Write down the steps involved in RTL design.		6	R	
	vii)	Realize two input NOR gate using C ² MOS design style.		3	A	
	viii)	Write expression for drain current for nMOS in linear region. Also write meaning of all terms.		1	U	
	Q.2	Solve any four questions out of six.	16			
	i)	Draw and explain VI characteristics of nMOS.		1	U	
	ii)	Draw an equivalent CMOS inverter for $y = /(A+BC)$ realized using static CMOS. (W/L) ratio for all pMOS is 12 and 8 for all nMOS.		2	A	
	iii)	Explain the problem of charge leakage in dynamic CMOS.		3	U	
	iv)	Design a NOR based ROM to store 1001, 0101, 0010, 1100.		4	A	
	v)	Demonstrate addition of (1010 0101 1001 0010) ₂ and (0101 0010 0111 0100) ₂ using Carry Select Adder.		5 -	A	
	vi)	Design 3 tap FIR filter using RTL design technique.	*	6	С	
	Q.3	Solve any two questions out of three.	16			
	i)	Draw stick diagram and mask layout for CMOS inverter adhering to lambda rules.		1	A	
	ii)	Derive an expression for V_{OH} and V_{IH} of a CMOS inverter.		2	U	

K. J. Somaiya Institute of Technology, Sion, Mumbai-22 (Autonomous College Affiliated to University of Mumbai)

Supplementary Exam Feb/Mar 202

B. Tech Program: Electronics and Telecommunication

Examination: **TY**

Course Code: EXC502

Date of Exam:

Duration: 2.5 Hours

Scheme: II Semester: V

Course Name: Digital VLSI Design

Max. Marks: 60

iii) Design Soda Dispenser Machine using RTL design technique.

6 (

O.4 Solve any two questions out of three.

16

Realize y = /(AB+CD) using following design styles,
a) Static CMOS
b) Dynamic CMOS
c) Pseudo nMOS

3 A

ii) Draw 1-T DRAM cell. Explain precharge, read and refresh operation.

4 U

Draw 4-bit array multiplier. Calculate the maximum path delay if the propagation delay for an AND gate is 2ns and adder is 4ns.

5 Ar
