DECEMBER 2019 # EXAMINATION TIME TABLE PROGRAMME - S.E. (Electronics & Telecommunication) (REV. -2012) (CBSGS) SEMESTER - III | Days and Dates | Time | Paper Code | Paper | | |------------------------------|--------------------------|------------|--------------------------------------|--| | Thursday, November 14, 2019 | 02:30 p.m. to 05:30 p.m. | 49601 | ANALOG ELECTRONICS - I | | | Monday, November 18, 2019 | 02:30 p.m. to 05:30 p.m. | 49602 | APPLIED MATHEMATICS-III | | | Wednesday, November 20, 2019 | 02:30 p.m. to 05:30 p.m. | 49603 | DIGITAL ELECTRONICS | | | Friday, November 22, 2019 | 02:30 p.m. to 05:30 p.m. | 49604 | ELECTRONIC INSTRUMENTS & MESUREMENTS | | | Tuesday, November 26, 2019 | 02:30 p.m. to 05:30 p.m. | 49605 | CIRCUITS AND TRANSMISSION
LINES | | | 100 | 7.1 | 6 N | Max. | , M | lar | ks | :8 | 30 | |-----|------|-----|------|------|--------|----------|------------|--------------| | | 7,97 | | | Max. | Max. M | Max. Mar | Max. Marks | Max. Marks:8 | | 7 | ■ T | \mathbf{r} | | |---|-----|--------------|---| | | N. | к | • | | | | | _ | | | | <u> </u> | 37 4 | | | • | |---|-----|----------|------------|----|--------|---------| | 1 | (1) | Ouestion | $N \cap I$ | 10 | compil | Isorv | | и | | Oucsuon | 110.1 | 10 | COMBU | ISOI V. | - (2) Answer any **three** from remaining questions. - (3) **Figures** to the right indicate full marks. - (4) Assume suitable data if required. #### Q.1 Attempt any four | a | Compare JFET and MOSFET | 5 | |---|---|---| | b | Explain the Significance of stability factor | 5 | | c | Why crystal oscillator is most stable oscillator? | 5 | | d | Describe thermal runaway in BJT | 5 | | e | What is clipping and clamping explain with one example. | 5 | **Q.2** - a Draw BJT CE amplifier with any biasing circuit and derive expression for voltage gain, input impedance and output impedance. - b What is Varctor diode? Explain construction and operation of varactor diode. 10 **Q.3** - a Sketch the circuit of Wein Bridge Oscillator using BJT and derive an expression for the frequency of oscillation. - b For Common source amplifier with N-channel E0MOSFET determine A_V , Zi, and Zo. V_{DD} =21V, R_1 =42K, R_2 =33K, R_D =5K, R_S =1.5K. The MOSFET parameters are: V_{TN} =1.5V, K_D =0.5mA/V² Fig.3 - Q.4 For the amplifier shown in Fig.3 analyze and determine. Derive the expression for smallar signal voltage gain, input and output impedance. BJT and circuit parameters are: $\beta = 100, V_{BE} = 0.7V, V_A = 100V$. R₁=93.7K, R₂=6.3k, R_C=6K, R_S=0.5K, V_{CC}=12V. - b Draw the constructional diagram of N-Channel JFET, and explain the operation and thus obtain the V-I characteristics. Q.5 a An N-Channel FET with common drain amplifier shown in fig.4 has the following parameters: $I_{DSS=}10mA$, at $V_P=-4V$. Determine Small signal voltage gain, input impedance and output impedance. If $R_1=10M$, $R_2=2M$, $V_{DD}=18V$, $R_S=1.2k$, $R_L=10K$. b For the circuit shown in figure 5. Determine Q point co-ordinates. 10 #### **Q.6** Attempt the following a) LC oscillator and its application. b) Small signal h- parameter parameters of BJT c) Depletion MOSFET operation. d) Compare BJT and FET 5 ***** #### Paper / Subject Code: 49602 / APPLIED MATHEMATICS-III | (3 Hours) | Total Marks: 80 | |-----------|-----------------| | ` ' | | Note:- - 1) Question number 1 is compulsory. - 2) Attempt any **three** questions from the remaining **five** questions - 3) **Figures** to the **right** indicate **full** marks. - Q.1 a) Find the Laplace transform of cost cos2t cos3t - 05 - b) Show that the set of functions cosnx, n=1,2,3,... is orthogonal over $(0,2\pi)$ - c) Prove that $f(z) = (x^3 3xy^2 + 2xy) + i(3x^2y x^2 + y^2 y^3)$ is analytic and find $f^I(z)$ 05 in terms of z. - d) Find the directional derivative of $\varphi = x^2 + y^2 + z^2$ in the direction of the line $\frac{x}{3} = \frac{y}{4} = \frac{z}{5}$ 05 at (1, 2, 3) - Q.2 a) Find the fourier series for $f(x) = x^2$ in $(0, 2\pi)$ - 06 - b) Show that the vector $\overline{F} = (x^2 + xy^2) i + (y^2 + x^2y) j$ is irrotational and find its scalar potential - 06 - c) Prove that the transformation $w = \frac{1}{z+i}$ transforms real axis of z- plane into a circle of w-plane - Q.3 a) Using convolution theorem, find inverse Laplace transform of $\frac{s^2}{(s^2+2^2)^2}$. - b) Prove that $J_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{3 x^2}{x^2} \sin x \frac{3}{x} \cos x \right)$ 06 - c) Find half range cosine series for $f(x) = x(\pi x)$, $0 < x < \pi$. Hence show that $\sum_{1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$ 08 #### Paper / Subject Code: 49602 / APPLIED MATHEMATICS-III - Q.4 a) Evaluate by Green's theorem $\int_c (e^{x^2} xy) dx (y^2 ax) dy$ where c is the circle $x^2 + y^2 = a^2$. - 06 - b) Prove that $2 J_0''(x) = J_2(X) J_0(x)$. - c) i) Evaluate $\int_0^\infty \frac{e^{-t} e^{-3t}}{t} dt$ - ii) Find Laplace transform of $t\sqrt{1 + sint}$ - Q.5 a) Find the orthogonal trajectory of the family of curves $x^3y xy^3 = c$. - b) Prove that $\int x \cdot J_{2/3} (x^{3/2}) dx = -\frac{2}{3} x^{-1/2} J_{-1/3} (x^{3/2}).$ 06 - c) Obtain complex form of Fourier Series for $f(x) = e^{2x}$ in (0, 2). - Q.6 a) Use stoke's Theorem to evaluate $\int_c \overline{F} \cdot d\overline{r}$ where $\overline{F} = yz \ i + zx \ j + xy \ k$ 06 and C is the boundary of the circle $x^2 + y^2 + z^2 = 1$ and z = 0. - b) Find the fourier integral representation for 06 $$f(x) = e^{ax}, x \le 0, a > 0$$ = $e^{-ax}, x \ge 0, a > 0$ Hence show that $\int_0^\infty \frac{\cos wx}{w^2 + a^2} dx = \frac{\pi}{2a} e^{-ax}$, x > 0, a > 0 c) Solve using Laplace transform $(D^2 + 2D + 5)y = e^{-t}sint$, where y(0) = 0, $y^{\dagger}(0) = 1$. 08 ### Paper / Subject Code: 49603 / DIGITAL ELECTRONICS | (3 Hours) | Max Marks: 80 | |--|---------------| | N:B: | | | 1. Question No. 1 is compulsory. | | | 2. Out of remaining questions, attempt any three ques | tions. | | 3. Assume suitable additional data if required. | | | 4. Figures in brackets on the right hand side indicate f | full marks. | | | | | a) Perform following subtraction using 2's compliment. | 15 | | i) $(44)_{10} - (66)_{10}$ ii) $(76)_{10} - (34)_{10}$ | | | Q.1 | a) Perform following subtraction using 2's compliment.
i) $(44)_{10} - (66)_{10}$ ii) $(76)_{10} - (34)_{10}$ | [5] | |----------|---|------------| | | b) Define Noise margin, Propagation delay and Power dissipation. | [5] | | | c) Compare combinational circuits and sequential circuits. | [5] | | | d) Compare TTL and CMOS logic. | 5 [5] | | Q.2 | a) Simplify following expression using K-map and implement using only NOR gates. $F(A,B,C) = \sum_{i=1}^{n} (1,4,5,6,7)$ | [10] | | | b) Convert D flip flop to T flip flop. | [05] | | | c) Explain race around condition in JK flip flop. | [05] | | Q.3 | a) Minimize the following expression using Quine McClusky Technique $F(A,B,C,D) = \sum m (2,3,6,7,8,9,13,15)$ | [10] | | | b) Design full adder using logic gates. | [10] | | Q.4 | a) Design mod-10 ripple up counter using JK flip flop. Draw its timing diagram. | [10] | | | b) Implement the following function using single 8:1 Multiplexer and logic gates. $F(A, B, C, D) = \sum_{i=1}^{n} m(0,1,2,4,5,6,8,9,10,12,13,15)$. | [10] | | Q.5 | a) Explain the various features of VHDL and its modelling style. | [10] | | | b) Design mod-5 synchronous up counter using T flip flop. | [10] | | Q.6 | a) Write short note on FPGA. | [10] | | N. F. C. | b) What is shift register? Explain any one type of shift register. | [10] | Vo. Total marks: 80 | N. | B: | | |------|--|-------------| | | Attempt four questions, question no:1 is Compulsory. Assume suitable datawherever required. Answers to the questions should be grouped together. Figure to the right of question indicates full marks. | | | 1) | Attempt any four: 20 | 2000 | | | (a) Draw block diagram for generalized measurement system and explain its components. (b) Explain the working of straingauge and its application in load measurement. (c) Significance of four and half digit display. (d) List names of bridges for RLC measurement with proper classification (e) Brief out classifications of errors in measurement | | | 2. | (a). Explain with neat diagram the working principal of LVDT. Give its applications | 10 | | ۷. | (b). Describe how Q meter is used for the measurement of low impedance. What are various sources of errors in Q Meter | 10 | | 3. | (a). Explain Kelvin's Double bridge and its application in very low resistance measurement | 10 | | | (b). Draw neat block diagram of CRO and explain its functioning. Comment on role Sweep in CRO | 10 | | 4. | (a). Discuss DSO with the help of block diagram along with various modes of operation. Also explai applications | n its
10 | | | (b). What is the basic principal of wave analyzer and explain Heterodyne type wave analyser and its applications | 10 | | 5. | (a) Draw and explain weighted resistor network type DAC for 3 bits input taking suitable example | 10 | | | (b) Draw and discuss Maxwell bridge and its applications for measurement of inductance | 10 | | 6. | (a) Explain single and multichannel data acquisition system with neat labelled separate block diagra | am 10 | | | (b) Compare the temperature transducers, RTD, Thermistors and thermocouples on | | | Z Z | the basis of principle, characteristics ,range and applications | 10 | | 5,00 | | | Time: 3hrs Q.P. Code: 50501 [Time: Three Hours] [Marks:80] N.B. - 1) Question No. 1 is Compulsory - 2) Out of remaining questions, attempt any three - 3) Assume suitable data if required - 4) Figures to the right indicate full marks - 1 (A) Draw equivalent circuit for given magnetically coupled circuit. (B) In the network shown in Fig., switch is closed. Assuming all initial conditions as zero, find $\frac{di}{dt}$ at t = 0+. - (C) In the two port network shown in Fig., compute h-parameters from the following data 05 - (a) With the output port short circuited : $V_1 = 25 \text{ V}$, $I_1 = 1 \text{ A}$, $I_2 = 2 \text{ A}$ - (b) With the input port open circuited : $V_1 = 10 \text{ V}$, $V_2 = 50 \text{ V}$, $I_2 = 2 \text{ A}$ (D) Design an m-derived T section high pass filter with a cut-off frequency of 2 kHz. Design impedance of 700Ω and m = 0.6. #### Paper / Subject Code: 49605 / CIRCUITS AND TRANSMISSION LINES Q.P. Code: 50501 10 10 10 2 (A) In the network shown in Fig., switch is changed from position 1 to position 2 at t = 0, 10 steady condition having reached before switching. Find the values of i, $\frac{di}{dt}$ and $\frac{d2i}{dt2}$ at t = 0+. (B) Find Z and h-parameters for the network shown in Fig. 3 (A) Find the power supplied by the dependent voltage source. - (B) The parameters of a transmission lines are $R=65\Omega/km$, L=1.6mH/km, G=2.25 mmho/km, 10 C=0.1 μ F/km. Find - i) Characteristic Impedance - ii) Propagation Constant - iii) Attenuation Constant - iv) Phase Constant at 1 kHz 4 (A) Determine whether following functions are positive real i) $$\frac{s^4 + 3s^3 + s^2 + s + 2}{s^3 + s^2 + s + 1}$$ ii) $$\frac{s(s+3)(s+5)}{(s+1)(s+4)}$$ Q.P. Code: 50501 10 10 10 (B) Obtain Thevenin equivalent network of Fig. 5 (A) Find Y-parameters for the network shown in Fig. (B) Realize the following functions in Foster II and Cauer I form $$Z(s) = \frac{2(s^2 + 1)(s^2 + 9)}{s(s^2 + 4)}$$ - 6 (A) A transmission line has a characteristics impedance of 50 ohm and terminate in a load Z_L = 10 25 + j50 ohm. Use smith chart and Find VSWR and Reflection coefficient at the load. - (B) The network of Fig. is under steady state with switch at position 1. At t = 0, switch is moved to position 2. Find i (t). ************